• Title/Summary/Keyword: In-flight alignment

Search Result 38, Processing Time 0.03 seconds

Design of Transfer Alignment Algorithm with Velocity and Azimuth Matching for the Aircraft Having Wing Flexibility (유연성을 가지는 비행체를 위한 속도/방위각 정합 전달 정렬 알고리즘 설계)

  • Suktae Kang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.214-226
    • /
    • 2023
  • A transfer alignment is used to initialize, align, and calibrate a SINS(Slave INS) using a MINS(Master INS) in motion. This paper presents an airborne transfer alignment with velocity and azimuth matching to estimate inertial sensor biases under the wing flexure influence. This study also considers the lever arm, time delay and relative orientation between MINS and SINS. The traditional transfer alignment only uses velocity matching. In contrast, this paper utilizes the azimuth matching to prevent divergence of the azimuth when the aircraft is stationary or quasi-stationary since the azimuth is less affected by the wing flexibility. The performance of the proposed Kalman filter is analyzed using two factors; one is the estimation performance of gyroscope and accelerometer bias and the other is comparing aircraft dynamics and attitude covariance. The performance of the proposed filter is verified using a long term flight test. The test results show that the proposed scheme can be effectively applied to various platforms that require airborne transfer alignment.

A Study on the HWIL Simulation System of the Flight Object including Inertial Navigation System (관성항법장치가 포함된 비행체의 HWIL 시뮬레이션 시스템 개발 연구)

  • Lee, Ayeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.349-360
    • /
    • 2018
  • This paper proposes various methods for constructing a HWIL simulation system including Inertial Navigation System(INS) and Guidance Control Unit(GCU) under the assumption that the INS identifies the initial attitude of an aviation body through its own alignment and that it is a package consisting of an inertial sensor and a navigation computation module. This paper also presents a real-time computing technology and a way to calculate the command of the Flight Motion System(FMS) analogous to the acutal flight environment. The proposed HWIL simulation system is constructed by applying the above-mentioned methods and the results of running a series of simulations confirm high effectiveness and usefulness of the system. Finally, minor error factors that could be acquired only in HWIL simulation Environment are analyzed.

BITSE Ground Software

  • Baek, Ji-Hye;Park, Jongyeob;Choi, Seonghwan;Kim, Jihun;Yang, Heesu;Kim, Yeon-Han;Swinski, Joseph-Paul A.;Newmark, Jeffrey S.;Gopalswamy, Nat.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.58.1-58.1
    • /
    • 2019
  • We have developed Ground Software (GSW) of BITSE. The ground software includes mission operation software, data visualization software and data processing software. Mission operation software is implemented using COSMOS. COSMOS is a command and control system providing commanding, scripting and data visualization capabilities for embedded systems. Mission operation software send commands to flight software and control coronagraph. It displays every telemetry packets and provides realtime graphing of telemetry data. Data visualization software is used to display and analyze science image data in real time. It is graphical user interface (GUI) and has various functions such as directory listing, image display, and intensity profile. The data visualization software shows also image information which is FITS header, pixel resolution, and histogram. It helps users to confirm alignment and exposure time during the mission. Data processing software creates 4-channel polarization data from raw data.

  • PDF

MTF Measurement for Flight Model of MAC, a 2.5m GSD Earth Observation Camera (2.5m 해상도 지구관측 카메라 MAC 비행모델의 지상 MTF 성능 측정)

  • Kim, Eugene-D.;Choi, Young-Wan;Yang, Ho-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.98-103
    • /
    • 2005
  • The Flight Model of MAC (Medium-sized Aperture Camera), a 2.5m GSD class earth observation camera has been aligned and assembled. Topics discussed in this paper include the ground MTF performance of the MAC system, and the alignment of the focal plane assembly. MTF was measured by a knife-edge scanning technique, and a 450 mm diameter Cassegrain collimator with diffraction-limited performance was made and used for the MTF measurements. System MTF was used as the figure-of-merit to find the best focus of the focal plane assembly.

Error Analysis of the Navigation System Integrating Attitude GPS and low-Cost INS

  • Lee, Jae-Ho;Seo, Hung-Serk;Sung, Tae-Kyung;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.141.5-141
    • /
    • 2001
  • An attitude GPS receiver with 3 antennas obtains 3-dimensional attitude using GPS carrier phase measurement INS obtains the 3 dimensional navigation solution for IMU consisting of accelerometers and gyro. Ground-alignment process for the low -cost INS cannot be performed well due to the large sensor noise. Using the standard GPS receiver, however, continuous in-flight alignment for the INS becomes possible, and consequently, the errors in IMU sensors and navigation solution can be compensated. Especially with attitude measurement from the attitude GPS receiver, the compensation of errors in gyroscope and attitude would be done respite of the vehicle´s dynamics and their error covariance would be reduced. This paper presents ...

  • PDF

The Observability Analysis of SDINS on The Trajectory for The In-Flight Alignments (스트랩다운 관성항법 시스템의 운항 중 정렬을 위한 궤적에 따른 가관측성 분석)

  • Park, Joon-Goo;Lee, Jang-Gyu;Park, Chan-Gook;Chung, Do-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1002-1004
    • /
    • 1996
  • In this paper, presented are the results of observability analysis for the vehicle maneuver during In-Flight Alignment of SDINS. The target system for observability analysis is 10th order one. Three trajectories for IFA are considered. To analyze the observability of the time varying system, correlation coefficient is used and to measure the degree of observability of the given system, simulation is carried out using covariance matrix. The results of simulation show that trajectories which are having continuous changes in attitude and acceleration of system is superior to straight trajectory in correcting navigation errors.

  • PDF

Adaptive Filter Design for Radar Aided SDINS (레이다 보정형 스트랩다운 관성항법시스템을 위한 적응필터 구성)

  • 유명종;박찬주;김현백
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.420-424
    • /
    • 2003
  • A new adaptive filter is proposed for an aided strapdown inertial navigation system(SDINS). The proposed filter can be used to effectively estimate the time-varying variance of the measurement noise. Then, the in-flight alignment for the radar aided SDINS is designed using the additive quatermion error model. Simulation results show that the proposed adaptive filter effectively improves the performance of the radar aided SDINS.

Design of An Extended Robust H$\infty$ Filter

  • Yu, Myeong-Jong;Lee, Jang-Gyu;Park, Cha- Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.77.3-77
    • /
    • 2001
  • An extended robust H$\infty$ filter is proposed for a nonlinear uncertain system. We also analyze the characteristics of the proposed filter such as an H$\infty$ performance criterion using the Lyapunov function method. The analysis results show that proposed filter has a robustness against disturbances such as process and measurement noises and against parameter uncertainties. Then the in-flight alignment for a strapdown inertial navigation system is designed using the presented filter. Simulation results show that the proposed filter effectively improve the performance.

  • PDF

로켓 모션테이블 실시간 모의시험

  • Sun, Byung-Chan;Park, Yong-Kyu;Choi, Hyung-Don;Cho, Gwang-Rae
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.170-178
    • /
    • 2004
  • This paper deals with six degree-of-freedom HILS(hardware-in-the-loop-simulation) of KSR-III rocket using a TAFMS(three axis flight motion simulator). This TAFMS HILS test is accomplished before main HILS tests in order to verify the control stability in the presence of TAFMS dynamic effects. The TAFMS HILS test includes initial attitude holding tests for INS initial alignment procedures, timer synchronization tests with an auxiliary lift-off signal, real-time calibration tests using an external thermal recorder, open-loop TAFMS operating tests, and final closed-loop TAFMS HILS tests using the TAFMS attitude measurements as inputs to the closed control loop. The HILS tests are accomplished for several flight conditions composed with nominal flight condition, TWD effect added condition, slosh modes and/or bending modes existing condition, and windy condition, etc.

  • PDF

Improvement of Transfer Alignment Performance for Airborne EOTS (항공용 전자광학추적장비의 전달정렬 성능 개선)

  • Kim, Minsoo;Lee, Dogeun;Jeong, Chiun;Jeong, Jihee
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.60-67
    • /
    • 2022
  • An Electro-Optical Tracking System (EOTS) is an electric optical system with EO/IR cameras, laser sensors, and an IMU. The EOTS calculates coordinates of targets, using attitude and acceleration measured by the IMU. In particular for an armed aircraft, the performance of the weapon system depends on how quickly and accurately it acquires the target coordinates. The IMU should be operated after alignment is complete, to meet the coordinate accuracy required by the weapon system so the initial stabilization time of the IMU should be reduced, by quickly measuring the attitude and acceleration. Alignment is the process of determining the initial attitude by resolving the attitude error of the IMU, and the IMU of mission equipment such as an airborne EOTS, uses velocity matching based on the velocity from GPS/INS for aircraft navigation. In this paper, a method is presented to improve the transfer alignment performance of the airborne EOTS, by maneuvering aircraft and the mission equipment. First, the performance factor of the alignment was identified, as a heading error through the velocity matching model and simulation results. Then acceleration maneuvers and attitude changes were necessary, to correct the error. As a result of flight tests applied to an EOTS on a OOO aircraft system, the transfer alignment performance was improved as the duration time was decreased, by more than five times when the aircraft accelerated by more than 0.2g and the EOTS was moving until 6.7deg/s.