• Title/Summary/Keyword: In-filled concrete

Search Result 881, Processing Time 0.03 seconds

Seismic Evaluation of concrete-Filled Steel Piers with Secondary Reinforcement (보조보강재가 있는 콘크리트 충전 강교각의 내진성능 평가)

  • 박병기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.349-356
    • /
    • 2000
  • Strenght and ductility are major factors in the aseismic design of a bridge pier. In spite of good performance in both steel piers have not been used widely due to high cost. But with the filled-in concrete the steel pier have advantages compare to the steel pier only such as improved strength ductility fast construction small section and reasonable cost. In this paper concrete-filled steel piers are tested using quasi-static cyclic lateral load with constant axial load to evaluate the performance. The secondary reinforcement devices such as bolts corner plate and turn buckle are used inside of the piers to improve the ductility with minimum additional cost. Test results shows filled-in concrete and secondary reinforcement devices increase the strength and the ductility of the steel pier.

  • PDF

An Experimental Study on the Seismic Behavior of Box Type Concrete-Filled Steel Piers (박스형 강합성 교각의 내진 성능 평가를 위한 실험적 연구)

  • 서진환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.381-388
    • /
    • 2000
  • The steel piers and the concrete-filled steel piers, in spite of reasonable strength, high ductility, small section, and fast construction, have not been considered as the alternatives to the RC piers even in the highly populated urban area where aseismic safety, limited space and fast construction are indispensably required. In this paper, a steel pier and 4 box type concrete-filled steel piers were tested with the quasi-static cyclic loading to estimate the ductility and the strength. Additional devices such as base rib, turn-buckle, and anchor bolted added at the to increase the ductility with minimum additional cost. The result showed that the concrete filled-in steel piers had higher energy absorbtion and strength than steel piers had, but also showed that slight overlooking in the design and fabrication could lead to the abrupt fracture just after small local buckling at the bottom.

  • PDF

Flexural strength of high-strength concrete filled steel tube columns strengthened by carbon fiber sheets (탄소섬유쉬트로 보강한 고강도 콘크리트 충전강관(CFT) 기둥의 휨내력에 관한 연구)

  • Park, Jai-Woo;Hong, Young-Kyun;Hong, Gi-Soup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • The CFT (Concrete Filled Steel Tube) columns became popular in high rise building construction due to not only its composite effect but also economic advantage. However, it has been pointed out in various previous researches that the current practice in CFT columns may lead the steel tube to probable local buckling at critical sections of the columns right after yielding. To resolve such a problem, the TR-CFT (Transversely Reinforced Concrete Filled Steel Tube) column is proposed to control or at least delay the local buckling state at the critical section by wrapping the CFT columns with carbon fiber sheet. The validity of the proposed column system is validated through the present paper by observing the experimental performance and comparing it with the analytical prediction of the TR-CFT columns with hish strength concrete. It is also shown that the current design code provisions such as ACI-318, in which the contribution of concrete confining effect filled in steel tube is not appropriately accounted for, may contain too much conservatism.

Behaviour of lightweight aggregate concrete-filled steel tube under horizontal cyclic load

  • Fu, Zhongqiu;Ji, Bohai;Wu, Dongyang;Yu, Zhenpeng
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.717-729
    • /
    • 2019
  • A horizontal cyclic test was carried out to study the seismic performance of lightweight aggregate concrete filled steel tube (LACFST). The constitutive and hysteretic model of core lightweight aggregate concrete (LAC) was proposed for finite element simulation. The stress and strain changes of the steel tube and concrete filled inside were measured in the experiment, and the failure mode, hysteresis curve, skeleton curve, and strain curve of the test specimens were obtained. The influence of axial compression ratio, diameter-thickness ratio and material strength were analysed based on finite element model. The results show that the hysteresis curve of LACFST indicated favourable ductility, energy dissipation, and seismic performance. The LACFST failed when the concrete in the bottom first crushed and the steel tube then bulged, thus axial force imposed by prestressing was proved to be feasible. The proposed constitutive model and hysteretic model of LAC under the constraint of its steel tube was reliable. The bearing capacity and ductility of the specimen increase significantly with increasing thickness of the steel tube. The bearing capacity of the member improves while the ductility and energy dissipation performance slightly decreased with the increasing strength of the steel and concrete.

Practical Use of Self Compacting Concrete to be filled inside the Steel Tube Columns (무다짐 콘크리트를 이용한 높은 40m CFT 기둥의 시공)

  • 김규동;김한준;손유신;이승훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1023-1028
    • /
    • 2003
  • The structure of Tower Palace III Sports Center building was designed as concrete Filled Steel Tube(CFT) Column and the filled-in concrete was designed as high compressive strength of 500kgf/$m_2$. The self compacting concrete(SCC, non-vibrating concrete) with 65$\pm$5cm flow must be applied to this case for filling the CFT by injecting the concrete from the column bottom. Laboratory tests and pilot productions of batcher plant were performed for optimum mix design and the full scale Mock-Up test was performed to check the appicability of the construction method. As a result, we observed that good quality SCC and the pressure change of concrete pump normally used domestically. Based on these results, we have constructed 20-40m height CFT columns successfully.

  • PDF

Experimental Study on the Stress-Strain and Acid-Resistance of Pine Needle Ash Concrete (솔잎재 콘크리트의 응력-변형과 내산성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.99-103
    • /
    • 1999
  • This study examines the stress-strain and acid-resistance of pine needle ash (PNA) concrete. Materials used for this experiment are PNA , normal portland cement, natural fine and coarse aggregate. Test results show that the highest static modulus of elasticity are achieved by 5 % PNA filled PNA concrete. Acid-resistance of PNA concrete is increased with increase of the content of PNA. It is 1.29 times of the normal cement concrete for 5 % PNA filled PNA concrete and 2.57 times fo r15% PNA filled PNA concrete, based on the elased days for 25% mass loss of original mass immersed in the 5% H2SO4 solution. Accordingly, PNA concrete will greatly improve the properties of concrete.

  • PDF

Experimental and theoretical studies of confined HSCFST columns under uni-axial compression

  • Lai, M.H.;Ho, J.C.M.
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.527-552
    • /
    • 2014
  • The development of modern concrete technology makes it much easier to produce high-strength concrete (HSC) or ultra-high-strength concrete (UHSC) with high workability. However, the application of this concrete is limited in practical construction of traditional reinforced concrete (RC) structures due to low-ductility performance. To further push up the limit of the design concrete strength, concrete-filled-steel-tube (CFST) columns have been recommended considering its superior strength and ductility performance. However, the beneficial composite action cannot be fully developed at early elastic stage as steel dilates more than concrete and thereby reducing the elastic strength and stiffness of the CFST columns. To resolve this problem, external confinement in the form of steel rings is proposed in this study to restrict the lateral dilation of concrete and steel. In this paper, a total of 29 high-strength CFST (HSCFST) columns of various dimensions cast with concrete strength of 75 to 120 MPa concrete and installed with external steel rings were tested under uni-axial compression. From the results, it can be concluded that the proposed ring installation can further improve both strength and ductility of HSCFST columns by restricting the column dilation. Lastly, an analytical model calculating the uni-axial strength of ring-confined HSCFST columns is proposed and verified based on the Von-Mises and Mohr-Coulomb failure criteria for steel tube and in-filled concrete, respectively.

Axial Compression of Stub Columns for Concrete-filled Square Steel Tubes (일축 압축력을 받는 콘크리트충전 각형강관 단주의 구조적 거동)

  • Yoo, Yeong-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.617-624
    • /
    • 2021
  • Concrete-filled steel tubular columns can improve the strength and deformation capacity of structures, thereby enabling the development of efficient structures. The Korean design standard (KDS41) regarding concrete-filled steel tubular structures, established by the architectural institute of Korea in 2005, was revised in 2009 and 2016. The objective was to understand the compressive strengths and deformation capacity of stub columns for concrete-filled square steel tubes under uniaxial compression and validate the KDS41's standard code for necessary corrections. Experiments were conducted on 26 specimens with parameters, such as the width-thickness ratio of cold-formed square tubes. The following values of the stub columns for concrete-filled square steel tubes were obtained: compressive strengths, relationship between the axial load and axial displacement, and failure modes. An analysis of these results enabled an understanding of the concrete-filled effect and the influence of the wide-thickness ratio. The compressive strengths of filled concrete saw a 9% increase compared to a state of uniaxial stress, which must be noted in a future edition of KDS41. After benchmarking the results regarding square steel tubes generated by cold forming to the guidelines provided by the KDS41, the KDS41's value of 2.26 for the limiting width-to-thickness ratio for the compact section was found to be inflated. With a safety concern, this paper proposes a more conservative value of 1.35.

Design of High Strength Concrete Filled Tubular Columns For Tall Buildings

  • Liew, J.Y. Richard;Xiong, M.X.;Xiong, D.X.
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.215-221
    • /
    • 2014
  • Ultra-high strength concrete and high tensile steel are becoming very attractive materials for high-rise buildings because of the need to reduce member size and structural self-weight. However, limited test data and design guidelines are available to support the applications of high strength materials for building constructions. This paper presents significant findings from comprehensive experimental investigations on the behaviour of tubular columns in-filled with ultra-high strength concrete at ambient and elevated temperatures. A series of tests was conducted to investigate the basic mechanical properties of the high strength materials, and structural behaviour of stub columns under concentric compression, beams under moment and slender beam-columns under concentric and eccentric compression. High tensile steel with yield strength up to 780 MPa and ultra-high strength concrete with compressive cylinder strength up to 180 MPa were used to construct the test specimens. The test results were compared with the predictions using a modified Eurocode 4 approach. In addition, more than 2000 test data samples collected from literature on concrete filled steel tubes with normal and high strength materials were also analysed to formulate the design guide for implementation in practice.

Test and analysis of concrete-filled double steel and double skin tubular columns having outer stainless steel tube

  • Tokgoz, Serkan;Karaahmetli, Sedat;Dundar, Cengiz
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.23-38
    • /
    • 2022
  • This paper presents experimental and analytical studies of eccentrically loaded concrete-filled double steel (CFDST) and concrete-filled double skin tube (DCFST) columns having outer stainless steel tube. Eighteen CFDST and DCFST column specimens were manufactured and tested to examine the strength and load-deflection responses. In the study, the main parameters were concrete strength, load eccentricity, cross section and slenderness. The strengths, load-deflection diagrams and failure patterns of the columns were observed. In addition, the tested CFDST and DCFST columns were analyzed to attain the capacity and load versus lateral deflection responses. The obtained theoretical results were compared with the test results. A parametric study was also performed to research the effects of the ratio of eccentricity (e/Ho) slenderness ratio (L/r), Ho/to ratio, Hi/ti ratio and the concrete compressive strength on the behavior of columns. In this work, the obtained results indicated that the ductility and capacity of columns were affected by cross section, concrete strength, steel strength, loading eccentricity and slenderness.