• Title/Summary/Keyword: In-feed Grinder

Search Result 8, Processing Time 0.041 seconds

Review for Features of Wafer In-feed Grinder Structure (실리콘 웨이퍼 단면 연삭기 구조물 특성평가)

  • Ha S.B.;Choi S.J.;Ahn D.K.;Kim I.S.;Choi Y.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.555-556
    • /
    • 2006
  • In recent years, the higher flatness level in wafer shape has been strictly demanded with a high integration of the semiconductor devices. It has become difficult for a conventional wafer preparing process to satisfy those demands. In order to meet those demands, surface grinding with in-feed grinder is adopted. In an in-feed grinding method, a chuck table fur fixing a semiconductor wafrr rotates on its rotation axis with a slight tilt angle to the rotation axis of a cup shaped grinding wheel and the grinding wheel in rotation moves down to grind the wafer. So, stability of the grinder structure is very important to aquire a wafer of good quality. This paper describes the features of the in-feed grinder and some FEM analysis results of the grinder structure.

  • PDF

Preprocessing Miscanthus sacchariflorus with Combination System of Cone Grinder and Air Classifier

  • LEE, Hyoung-Woo;EOM, Chang-Deuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.328-335
    • /
    • 2021
  • Considerable differences exist in the characteristics of size reduction and classification because of biomass species. Miscanthus sacchariflorus (M. sacchariflorus) Goedae-Uksae 1 is not used efficiently because of the imperfections of the processing technology for this biomass. Therefore, for the best use of specific biomass, improvement in the feedstock preparation of the biomass for processing, such as pellet manufacturing, is necessary. In this study, a laboratory-scale cone grinder and air classifier were designed and combined to investigate the performance of the combination system for M. sacchariflorus. The average equivalent spherical diameter of particles showed a close relationship with air velocity for air classification. The air velocity range to classify proper particles for pelletization was determined to be 6.0-6.8 m/s. The mass ratios of the collected particles to feed mass for four lengths of chopped M. sacchariflorus were 45.1%:46.1%, 39.1%:46.6%, and 44.1%:52.8% at the first, second, and third steps in simulating the multistep combination system, respectively.

An Analysis of Transmitted-Vibration Characteristics by Different Wrist Posture during Grinding Tasks (그라인딩 작업시 손목자세별 국소진동 전달특성 분석)

  • Hwang, Seong-Hwan;Lee, Dong-Choon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.29-37
    • /
    • 2007
  • This study was performed to evaluate the characteristics of transmitted vibration to hand-arm system under different work posture while operating a light-weighted powered hand grinder. For the experiment, 8 different types of wrist posture (natural, unlar-flexion, radual-flexion, flexion, extension, complex posture, and etc.) and 3 types of feed force (20[N], 50[N], 70[N]) were considered. 10 male subjects were employed to polish metal plate with a hand grinder. All of them were normal and healthy with no history and symptom of the work related musculoskeletal disorders in the dominant hand. Vibration acceleration data were recorded with sampling rate, 2048[Hz]. In addition, unweighted overall R.M.S. acceleration at the tool and wrist, and transmissibility between them were used to evaluate factors from the recorded tri-axial vibration acceleration. The results indicate that transmissibility of natural wrist posture was significantly higher than others. In addition, as the feed force becomes larger, the vibration was transmitted in large quantities to hand-arm system through radius.

The Optimum Grinding Condition Selection of Grinding System (연삭시스템의 최적연삭가공조건)

  • Lee S.W.;Choi Y.J.;Hoe N.H.;Choi H.Z.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.563-564
    • /
    • 2006
  • In silicon wafer manufacturing process, the grinding process has been adopted to improve the flatness of water. The grinding of wafer is usually used by the infeed grinding machine. Grinding conditions are spindle speed, feed speed, rotation speed, grinding stone etc. But grinding condition selection and analysis is so difficult in grinding machine. In the intelligent grinding system based on knowledge many researchers have studied expert system, neural network, fuzzy etc. In this paper we deal grinding condition selection method, Taguchi method and Genetic Analysis.

  • PDF

The Trend of wafer Grinding Technology and Improvement of Machining Accuracy (웨이퍼 연삭 가공 기술의 동향 및 가공 정밀도 향상에 관한 연구)

  • 안대균;황징연;이재석;이용한;하상백;이상직
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.20-23
    • /
    • 2002
  • In silicon wafer manufacturing process, the grinding process has been adopted to improve the quality of wafer such as flatness, roughness and so on. This paper describes the effect of grinding process on the surface quality of wafer. The experiments are carried out by high precision in fred grinder with air bearing spindle. The relationship between the inclination of chuck table and the flatness of wafer is investigated, and the effect of grinding conditions including wheel speed, table speed, and feed rate on damage depth and roughness of wafer is also investigated. The experimental results show that there is close relationship between the inclination of the chuck table and the flatness of wafer, and the grinding conditions within this paper little affect the flatness of wafer and relatively high affect the damage depth of wafer.

  • PDF

The Probabilistic Forcasting of Product's Surface Quality (제품 표면품질의 확률적 예측)

  • 여명구;양정회
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.47-57
    • /
    • 1997
  • As a general index in surface quality of machined products, surface roughness is to measure worker's skill level, a ground product quality and machining accuracy, etc. The surface roughness is defined by a function of rotational speed and radius of a grinding wheel, distances of active grains composed of the wheel, and feed of a grinder's worktable. To predict surface roughness in horizontal surface grinding operations, probability distributions were used. Probability distribution functions(p.d.f.) of surface roughness were found as results when the size of active grains(=the radius of a grinding wheel) is given as uniform, exponential distribution, and the distance between active grains follows the distributions of uniform, exponential. For each pdf case, probabilistic features of surface roughness were also analyzed and presented. This study is a substantial step for determining mathematically the surface roughness instead of using empirical approaches. More works should be presented to develop a general model by which an accurate roughness value can be obtained in horizontal surface grinding operations.

  • PDF

Development of Magneto-Electrolytic-Abrasive Polishing System for Piston Pin (피스톤 핀의 자기전해 경면연마 시스템 개발)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.59-64
    • /
    • 1998
  • We need to achieve th mass product through methods of higher efficient, higher precise manufacturing process than those of existing precision abrasive machining. Thus, this study is to develop mirror-like surface machining technique of outer diameter of the piston pin by the compound magneto-electrolytic abrasive polishing system. The procedure of machining is followed as first, fulfill the pre-processing by cylindrical grinder, second, complete mirror-like surface by the method of magneto-electrolytic abrasive polishing used CBN non-woven abrasive pads. In this study, it was found that the best suitable conditions of mirror-like surface polishing were that the electrode density was 0.1A/$\textrm{cm}^2$, the applied pressure 1.5kgf/$\textrm{cm}^2$, the feed rate 0.5mm/rev, and the rotoation velocity of workpiece 80rpm, and that the surface roughness was reduced in this conditions.

  • PDF

Study on grinding of the black alumina (블랙 알루미나의 연삭가공에 관한 연구)

  • Park, Jong-Nam;Noh, Seung-Hee;Lee, Dong-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.7-12
    • /
    • 2019
  • Generally, end effectors for automatic robots can use ceramics such as alumina(Al2O3) and silicon carbide(SiC). In this study, black alumina was developed and used in the semiconductor field through powder molding press forming. The black alumina can be mass produced.Alumina and black alumina were ground using a plane grinder to apply to the end effector of an automatic robot. The optimal cutting conditionswere found by analyzing the surface roughness(Ra) of black alumina through grinding. The alumina surface roughness is the feed rate was about 0.72 mm/sec, and the number of revolutions was best at 0.4879 ㎛ at 1700 rpm. In addition, the black alumina surface roughness shows a precision of less than 0.2 ㎛ in most cutting conditions. The feed rate was about 0.72 mm/sec, and the number of revolutions was best at 0.1361 ㎛ at 1900 rpm. The surface roughness of black alumina was better than that of alumina by about 0.35 to 0.47 ㎛.