• Title/Summary/Keyword: In-cylinder Flow

Search Result 1,484, Processing Time 0.023 seconds

Simulation of the effect of inclusions length and angle on the failure behavior of concrete structure under 3D compressive test: Experimental test and numerical simulation

  • Mohammad Saeed, Amini;Vahab, Sarfarazi;Kaveh, Asgari;Xiao, Wang;Mojtaba Moheb, Hoori
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2023
  • Man-made structure materials like concrete usually contain inclusions. These inclusions affect the mechanical properties of concrete. In this investigation, the influence of inclusion length and inclination angle on three-dimensional failure mechanism of concrete under uniaxial compression were performed using experimental test and numerical simulation. Approach of acoustic emission were jointly used to analyze the damage and fracture process. Besides, by combining the stress-strain behavior, quantitative determination of the thresholds of crack stress were done. concrete specimens with dimensions of 120 mm × 150 mm × 100 mm were provided. One and two holes filled by gypsum are incorporated in concrete samples. To build the inclusion, firstly cylinder steel tube was pre-inserting into the concrete and removing them after the initial hardening of the specimen. Secondly, the gypsum was poured into the holes. Tensile strengths of concrete and gypsum were 2.45 MPa and 1.5 MPa, respectively. The angle bertween inclusions and axial loadind ary from 0 to 90 with increases of 30. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Diameter of the hole was 20 mm. Entirely 20 various models were examined under uniaxial test. Simultaneous with experimental tests, numerical simulation (Particle flow code in two dimension) were carried out on the numerical models containing the inclusions. The numerical model were calibrated firstly by experimental outputs and then failure behavior of models containing inclusions have been investigated. The angle bertween inclusions and axial loadind vary from 0 to 90 with increases of 15. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Entirely 32 various models were examined under uniaxial test. Loading rate was 0.05 mm/sec. The results indicated that when inclusion has occupied 100% of sample thickness, two tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusion has occupied 75% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusions have occupied 50% and 25% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. Also the inclusion was failed by one tensile crack. The compressive strength of samples decease with the decreases of the inclusions length, and inclusion angle had some effects on that. Failure of concrete is mostly due to the tensile crack. The behavior of crack, was affected by the inclusion length and inclusion number.

Acceleration Test Method for Failure Prediction of the End Cap Contact Region of Sodium Cooled Fast Reactor Fuel Rod (소듐냉각 고속로 연료봉단의 접촉부 손상예측을 위한 가속시험 방법)

  • Kim, Hyung-Kyu;Lee, Young-Ho;Lee, Hyun-Seung;Lee, Kang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.375-380
    • /
    • 2017
  • This paper reports the results of an acceleration test to predict the contact-induced failure that could occur at the cylinder-to-hole joint for the fuel rod of a sodium-cooled fast reactor (SFR). To incorporate the fuel life of the SFR currently under development at KAERI (around 35,000 h), the acceleration test method of reliability engineering was adopted in this work. A finite element method was used to evaluate the flow-induced vibration frequency and amplitude for the test parameter values. Five specimens were tested. The failure criterion during the life of the SFR fuel was applied. The S-N curve of the HT-9, the material of concern, was used to obtain the acceleration factor. As a result, a test time of 16.5 h was obtained for each specimen. It was concluded that the $B_{0.004}$ life would be guaranteed for the SFR fuel rods with 99% confidence if no failure was observed at any of the contact surfaces of the five specimens.

Some Applications of the TUMMAC Method to 3D Water-wave Problems (TUMMAC차분법(差分法)에 의한 3차원(次元) 비선형파(非線形波)의 해석(解析)에 관한 연구(硏究))

  • Young-Gill,Lee;Hideaki,Miyata;Hisashi,Kajitani
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.13-27
    • /
    • 1988
  • Two version of the TUMMAC(Tokyo University Modified Marker-And-Cell) method, i.e., $TUMMAC-IV_{vm1}$ and TUMMAC-VI are applied to two water-wave problems. The ship wave of a Series 60 model($C_B=0.6$) and of the fore-body of a HSVA tanker model are simulated by the $TUMMAC-IV_{vm1}$ method are the results are compared with the experimental results. From the comparison with the experimental data it is ascertained that the $TUMMAC-IV_{vm1}$ method is useful for the analysis of the realized by the TUMMAC-VI method is useful for the analysis of the characteristics of nonlinear ship waves. Three-dimensional wave breaking is realized by the TUMMAC-VI method in the simulation of a flow about a vertical rectangular cylinder. From the results of this simulation, it is shown that the TUMMAC-VI method is very available for the simulation of 3-dimensional wave breaking phenomena.

  • PDF

A Study for Failure Examples Including with Engine Oil Leakage, Poor Contact by Fin Damage and Vaporizer Inferiority on LPG Automotive (LPG 자동차의 엔진오일누설, 핀 손상에 의한 접촉불량, 베이퍼라이저 내부불량으로 인한 고장사례연구)

  • IL Kwon, Lee;Chang Ho, Kook;Sung Hoon, Ham;Seung Yong, Lee;Jae Gang, Lee;Seung Min, Han; Woo Chan, Hwang;Dae Cheon, Jang;Chang Bae, You;Jeong Ho, Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.24-29
    • /
    • 2022
  • This paper is a purpose to Analyze and study the failure examples for a engine oil leakage of camshaft bearing seal, poor contact by computer connector fin damage and vaporizer inferiority on LPG automotive. The first example, when the researcher disassembled the cylinder head of engine to establish the cause for oil leakage, he confirmed the engine oil leakage by damaged between the engine intake camshaft bearing and seal part. The second example, the connector fin of power source line that control the starting of a car supplied with engine computer. As a result, it found the fact that the engine operation stopped because of cutting of the power source by connector fin damage. The third example, it verified the engine incongruity phe cutting of the power source by connector fin damage. The third example, it verified the engine incongruity phenomenon as thd gas didn't flow the vaporizer by foreign substance deposit. Finally, it supplied a small quantity gas from vaporizer to mix. As the computer controlling mix opening condition supplied a air as opening signal, the air and fuel became rarefied state. it knew that the engine didn't produce prpper power. Therefore, a car have to throughtly inspect not in order to arise the failure symptoms.