• Title/Summary/Keyword: In-based alloy

Search Result 1,352, Processing Time 0.027 seconds

Preparation of gas-atomized Fe-based alloy powders and HVOF sprayed coatings

  • Chau, Joseph Lik Hang;Pan, Alfred I-Tsung;Yang, Chih-Chao
    • Advances in materials Research
    • /
    • v.6 no.4
    • /
    • pp.343-348
    • /
    • 2017
  • High-pressure gas atomization was employed to prepare the Fe-based $Fe_{50}Cr_{24}Mo_{21}Si_2B_3$ alloy powder. The effect of flow rate of atomizing gas on the median powder diameter was studied. The results show that the powder size decreased with increasing the flow rate of atomizing gas. Fe-based alloy coatings with amorphous phase fraction was then prepared by high velocity oxygen fuel spraying (HVOF) of gas atomized $Fe_{50}Cr_{24}Mo_{21}Si_2B_3$ powder. Microstructural studies show that the coatings present dense layered structure and low porosity of 0.17% in about $200{\mu}m$ thickness. The Fe-based alloy coating exhibits an average hardness of about 1230 HV. Our results show that the HVOF process results in dense and well-bonded coatings, making it attractive for protective coatings applications.

Al corrosion phenomena on the Al grain boundary after AlCu plasma etching (AlCu 플라즈마 식각후 Al 결정입계에서 Al 부식현상)

  • 김창일;권광호;윤선진;김상기;백규하;남기수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.12
    • /
    • pp.47-52
    • /
    • 1996
  • Cl-based gas chemistry is generally used to etching for al alloy metallization. After the etching of Al alloy with Cl-based gas plasma, residual chlorine on Al alloy reacts with H$_{2}$O due to air exposure and results in Al corrosion. In this study, the corrosion phenomena of Al wer examined with XPS(X-ray photoelectron spectroscopy) and SEM (scanning electorn microscopy). It was confirmed that chlorine mainly existed at the grian boundary of Al alloy after plasma etching of Al alloy with cl-based gas chemistry and Al corrosion was largely generated at the grain boundary of Al alloy. And residual chlorine was passivated by sulfur and fluorine which were generated by SF$_{6}$ plasma. These effects of passivation reduced the Al corrosion due to air exposure.

  • PDF

Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy

  • Selmi, Abdellatif
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.365-377
    • /
    • 2019
  • This paper investigates the effectiveness of Single Walled Carbon Nanotubes, SWNT, in improving the dynamic behavior of cracked Aluminium alloy, Al-alloy, beams by using a method based on changes in modal strain energy. Mechanical properties of composite materials are estimated by the Eshelby-Mori-Tanaka method. The influence of SWNT volume fraction, SWNT aspect ratio, crack depth and crack location on the natural frequencies of the damaged 3D randomly oriented SWNT reinforced Al-alloy beams are examined. Results demonstrate the significant advantages of SWNT in reducing the effect of cracks on the natural frequencies of Al-alloy beams.

A STUDY ON THE FLEXURAL BOND STRENGTH OF THE GOLD AND THE Co-Cr ALLOY TO THE DENTURE BASE RESINS (금 합금 및 비 귀금속 합금에 대한 의치상 레진의 결합강도에 관한 연구)

  • Park, Hyun-Joo;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.500-509
    • /
    • 2000
  • In general, the three major oral functions of edentulous patients-mastication, phonation, esthetics-can be rehabilitated by the complete dentures, and both the resin based complete denture and the metal based complete denture are commonly used by many clinicians today. For the sake of many advantages such as the excellent thermal conductivity, low volumetric change, high strength, low risk of fracture and the better patient's adaptation, the metal based complete dentures are indicated to the several cases. But, there are common failures of these type of dentures mainly by the fracture or the debonding between the resin structures and the metal frameworks which is caused by the discrepancies of the flexural strength and the coefficient of thermal expansion. This is aggravated by the water contamination of the interface when exposed to the oral environment and results in the failure of complete denture treatment. So, the purpose of this study is to compare the bond strength and the fracture patterns of the gold alloy based and the Co-Cr alloy based complete dentures using the PMMA resins and the 4-META adhesive resins. The results of this study were as follows. 1. Both to the PMMA resin and the 4-META resin, the flexural bond strength of gold alloy is lower than that of Co-Cr alloy(P<0.05) 2. To the Co-Cr alloy, the bond strength of the 4-META resin is significantly higher than that of PMMA resin(P<0.05). 3. The flexural strength of the group with the mechanical retention form is significantly higher than that of the group without retention form(P<0.05). 4. Comparing with the other groups, the fracture patterns of the group 3 are quite different from the group 1,2,5.

  • PDF

Effect of Heat Treatment Conditions on the Microstructure and Wear Behavior of Ni-based Self-flux Alloy Coatings (니켈기 자융성 합금 코팅층의 미세구조 및 마모거동에 미치는 후열처리 조건의 영향)

  • Kim, K.T.;Oh, M.S.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.121-126
    • /
    • 2007
  • This study aims at investigating the effect of heat treatment conditions on the dry sliding wear behavior of thermally sprayed Ni-based self-flux alloy coatings. Ni-based self-flux alloy powders were sprayed onto a carbon steel substrate and then heat-treated at 700, 800, 900 and $1000^{\circ}C$ for 30 minutes in a vacuum furnace. Dry sliding wear tests were performed using sliding speed of 0.4 m/s and applied load of 6 N. AISI 52100 ball(diameter 8 mm) was used as counterparts. Microstructure and wear behavior of both as-sprayed and heat-treated Ni-based self-flux alloy coatings were studied using a scanning electron microscope(SEM), energy dispersive X-ray spectroscopy(EDX), electron probe micro-analysis(EPMA) and X-ray diffraction(XRD). It was revealed that microstructure and wear behavior of thermally sprayed Ni-based self-flux alloy coatings were much influenced by heat treatment conditions.

  • PDF

Fabrication of Ni-free Fe-based Alloy Nano Powder by Pulsed Wire Evaporation in Liquid: Part 2. Effect of Solvent and Comparison of Fabricated Powder owing to Fabrication Method (액중 전기선 폭발법에 의한 Ni-free Fe계 나노 합금분말의 제조: 2. 용매의 영향 및 제조 방법에 따른 분말입자의 비교)

  • Ryu, Ho-Jin;Lee, Yong-Heui;Son, Kwang-Ug;Kong, Young-Min;Kim, Jin-Chun;Kim, Byoung-Kee;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.112-121
    • /
    • 2011
  • This study investigated the effect of solvent on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid and compared the alloy particles fabricated by three different methods (PWE in liquid, PWE in Ar, plasma arc discharge), for high temperature oxidation-resistant metallic porous body for high temperature soot filter system. Three different solvents (ethanol, acetone, distilled water) of liquid were adapted in PWE in liquid process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. The alloy powder synthesized by PWE in ethanol has good particle size and no surface oxidation compared to that of distilled water. Since the Fe-based alloy powders, which were fabricated by PWE in Ar and PAD process, showed surface oxidation by TEM analysis, the PWE in ethanol is the best way to fabricate Fe-based alloy nano powder.

Effects of Surface Treatment using Oxide-Dispersion-Strengthening on the Mechanical Properties of Zr-based Fuel Cladding Tubes (산화물 분산강화 표면처리에 따른 지르코늄 피복관의 기계적 강도)

  • Jung, Yang-Il;Kim, Il-Hyun;Kim, Hyun-Gil;Jang, Hun;Lee, Seung-Jae
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.271-276
    • /
    • 2019
  • Oxide-dispersion-strengthened (ODS) alloy has been developed to increase the mechanical strength of metallic materials; such an improvement can be realized by distributing fine oxide particles within the material matrix. In this study, the ODS layer was formed in the surface region of Zr-based alloy tubes by laser beam treatment. Two kinds of Zr-based alloys with different alloying elements and microstructures were used: KNF-M (recrystallized) and HANA-6 (partial recrystallized). To form the ODS layer, $Y_2O_3$-coated tubes were scanned by a laser beam, which induced penetration of $Y_2O_3$ particles into the substrates. The thickness of the ODS layer varied from 20 to $55{\mu}m$ depending on the laser beam conditions. A heat affected zone developed below the ODS layer; its thickness was larger in the KNF-M alloy than in the HANA-6 alloy. The ring tensile strengths of the KNF-M and HANA-6 alloy samples increased more than two times and 20-50%, respectively. This procedure was effective to increase the strength while maintaining the ductility in the case of the HANA-6 alloy samples; however, an abrupt brittle facture was observed in the KNF-M alloy samples. It is considered that the initial microstructure of the materials affects the formation of ODS and the mechanical behavior.

A Study on the Electrode Characteristics of a New High Capacity Non-Stoichiometry Zr-Based Laves Phase Alloys for Anode Materials of Ni/MH Secondary Battery

  • Lee Sang-Min;Yu Ji-Sang;Lee Ho;Lee Jai-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.72-75
    • /
    • 2000
  • For the purpose of developing the non-stoichiometric Zr-based Laves phase alloy with higher capacity and better performance for electrochemical application, extensive work has been carried out in KAIST. After careful alloy design of $ZrMn_2-based$ hydrogen storage alloys through varing their stoichiometry while susbstituting or adding some alloying elements, the $Zr-Ti-(Lh-V-Ni)_{2.2},\;Zr-Ti-(Mn-V-Cr-Ni)_{1.8\pm0.1}$ with high capacity and better performance was developed. Consequently the $Zr-Ti-(Mn-V-Ni)_{2.2}$ alloy has a high discharge capacity of 394mAh/g and shows a high rate capability equaling to that of commercialized $AB_5$ type alloys. On the other hand, in order to develop the hydrogen storage alloy with higher discharge capacity, the hypo-stoichiometric $Zr(Mn-V-Ni)_{2-\alpha}$ alloys substituted by Ti are under developing. As the result of competitive roles of Ti and $stocihiometry({\alpha})$, the discharge capacity of $Zr-Ti-(Mn-V-Cr-Ni)_{l.8\pm0.1}$ alloys is about 400mAh/g(410 mAh/g, which shows the highest level of performance in the Zr-based alloy developed. Our sequential endeavor is improving the shortcoming of Zr-based Laves phase alloy for commercialization, i.e., poor activation property and low rate capability, etc. It is therefore believed that the commercialization of Zr-based Laves phase hydrogen storage alloy for Ni-MH rechargeable battery is in near future.

The corrosion phenomena of AlCu films after reactive ion etching (반응성 이온 식각후 AlCu막의 부식현상)

  • 김창일;권광호;김상기;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.252-255
    • /
    • 1996
  • Cl-based gas chemistry is generally used to etching for Al alloy metallization. After the etching of Al alloy with Cl-based gas plasma, residual chlorine on Al alloy reacts with $H_2O$ due to air exposure and results in Al corrosion. In this study, the corrosion Phenomena of Al were examined with XPS(X-ray photoelectron spectroscopy) and SEF(Scanning electron microscopy). It was confirmed that chlorine mainly existed at the grain boundary of Al alloy after plasma etching of Al alloy with Cl-based gas chemistry and Al corrosion was largely generated at the grain boundary of Al a1loy. And residual chlorine was passivated by sulfur and fluorine which were generated by SF$_{6}$ plasma. These effects of passivation reduced the Al corrosion due to air exposure.e.

  • PDF

Difference in Solidification Process between Al-Mg Alloy and Al-Si Alloy in Die-Casting (Al-Mg계 합금과 Al-Si계 합금의 다이캐스팅 응고과정의 차이)

  • Choi, Se-Weon;Kim, Young-Chan;Cho, Jae-Ik;Kang, Chang-Seog;Hong, Sung-Kil
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.82-85
    • /
    • 2012
  • The effect of the alloy systems Al-Mg alloy and Al-Si alloy in this study on the characteristics of die-casting were investigated using solidification simulation software (MAGMAsoft). Generally, it is well known that the casting characteristics of Al-Mg based alloys, such as the fluidity, feedability and die soldering behaviors, are inferior to those of Al-Si based alloys. However, the simulation results of this study showed that the filling pattern behaviors of both the Al-Mg and Al-Si alloys were found to be very similar, whereas the Al-Mg alloy had higher residual stress and greater distortion as generated due to solidification with a larger amount of volumetric shrinkage compared to the Al-Si alloy. The Al-Mg alloy exhibited very high relative numbers of stress-concentrated regions, especially near the rib areas. Owing to the residual stress and distortion, defects were evident in the Al-Mg alloy in the areas predicted by the simulation. However, there were no visible defects observed in the Al-Si alloy. This suggests that an adequate die temperature and casting process optimization are necessary to control and minimize defects when die casting the Al-Mg alloy. A Tatur test was conducted to observe the shrinkage characteristics of the aluminum alloys. The result showed that hot tearing or hot cracking occurred during the solidification of the Al-Mg alloy due to the large amount of shrinkage.