• Title/Summary/Keyword: In-band full duplex

Search Result 36, Processing Time 0.022 seconds

Adaptive Range-Based Collision Avoidance MAC Protocol in Wireless Full-duplex Ad Hoc Networks

  • Song, Yu;Qi, Wangdong;Cheng, Wenchi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3000-3022
    • /
    • 2019
  • Full-duplex (FD) technologies enable wireless nodes to simultaneously transmit and receive signal using the same frequency-band. The FD modes could improve their physical layer throughputs. However, in the wireless ad hoc networks, the FD communications also produce new interference risks. On the one hand, the interference ranges (IRs) of the nodes are enlarged when they work in the FD mode. On the other hand, for each FD pair, the FD communication may cause the potential hidden terminal problems to appear around the both sides. In this paper, to avoid the interference risks, we first model the IR of each node when it works in the FD mode, and then analyze the conditions to be satisfied among the transmission ranges (TRs), carrier-sensing ranges (CSRs), and IRs of the FD pair. Furthermore, in the media access control (MAC) layer, we propose a specific method and protocol for collision avoidance. Based on the modified Omnet++ simulator, we conduct the simulations to validate and evaluate the proposed FD MAC protocol, showing that it can reduce the collisions effectively. When the hidden terminal problem is serious, compared with the existing typical FD MAC protocol, our protocol can increase the system throughput by 80%~90%.

16-QAM OFDM-Based W-Band Polarization-Division Duplex Communication System with Multi-gigabit Performance

  • Kim, Kwang Seon;Kim, Bong-Su;Kang, Min-Soo;Byun, Woo-Jin;Park, Hyung Chul
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.206-213
    • /
    • 2014
  • This paper presents a novel 90 GHz band 16-quadrature amplitude modulation (16-QAM) orthogonal frequency-division multiplexing (OFDM) communication system. The system can deliver 6 Gbps through six channels with a bandwidth of 3 GHz. Each channel occupies 500 MHz and delivers 1 Gbps using 16-QAM OFDM. To implement the system, a low-noise amplifier and an RF up/down conversion fourth-harmonically pumped mixer are implemented using a $0.1-{\mu}m$ gallium arsenide pseudomorphic high-electron-mobility transistor process. A polarization-division duplex architecture is used for full-duplex communication. In a digital modem, OFDM with 256-point fast Fourier transform and (255, 239) Reed-Solomon forward error correction codecs are used. The modem can compensate for a carrier-frequency offset of up to 50 ppm and a symbol rate offset of up to 1 ppm. Experiment results show that the system can achieve a bit error rate of $10^{-5}$ at a signal-to-noise ratio of about 19.8 dB.

Design and Performance Evaluation of In-Band Full-Duplex System Based on Direct Conversion Receiver (직접변환 수신기 구조에서 In-Band Full-Duplex 시스템 설계와 성능 특성 평가)

  • Keum, Hong-Sik;An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1258-1268
    • /
    • 2014
  • In this paper, we propose and design IBFD system based on DCR. And then, we analyze effect of DC offset by self-interference in the proposed system. Also, we evaluate BER performance of the proposed system according to DC offset. As a result of the simulation, we can confirm that when the self-interference is not completely cancelled by the RF cancellation, linearity of desired signal and self-interference is distorted by DC offset. Also, in the proposed system using m-QAM modulation, DC offsets of multi-level are caused by self-interference with m-QAM modulation. As a result, constellations of desired signal and self-interference are greatly distorted. In contrast, in the proposed system using m-PSK modulation, DC offset of single level is caused by self-interference with m-PSK modulation. In this condition, we confirm that distortion of constellations of desired signal and self-interference is less than when using m-QAM modulation. That is, we can confirm that m-PSK modulation is effective than m-QAM modulation in DCR based IBFD system. Also, we can confirm that it is important to cancel self-interference as much as possible in RF-stage.

Simultaneous Single Band Duplex System for the Spectrum Efficiency Improvement (스펙트럼 효율 향상을 위한 동일대역 동시 통신 (Simultaneous Single Band Duplex) 시스템)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.9
    • /
    • pp.810-816
    • /
    • 2013
  • In this paper, we propose a SSD (simultaneous single-band duplex) system using Digital Cancellation. Also, we propose a method for Digital Cancellation when RF Cancellation is effectively performed. The proposed system has estimation frame for effective self-interference channel estimation in time-domain. The proposed system calculates signal power for selection of optimal coefficient after digital cancellation. Then, the proposed system selects coefficient of minimum signal power. Further, the proposed system uses LDPC code to minimize the effects of remaining self-interference signal. The proposed system shows BER performance of at 20dB by cancelling self-interference and iterating LDPC code. That is, the proposed system shows that the SSD communication is possible in static self-interference channel.

Iterative Self-Interference Channel Estimation for In-Band Full-Duplex Cellular Systems (대역내 전이중 셀룰러 시스템을 위한 반복적인 자기간섭 채널 추정)

  • Shin, Changyong;Ryu, Young Kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.25-33
    • /
    • 2018
  • In this paper, we propose an iterative self-interference (SI) channel estimation method for in-band full-duplex cellular systems that employ orthogonal frequency division multiple access (OFDMA) on downlink (DL) and single-carrier frequency division multiple access (SC-FDMA) on uplink (UL), as in Long Term Evolution (LTE) systems. The proposed method first acquires coarse estimates of SI channels using DL signals and UL pilots, which are known to the base stations, and then refines the estimates by consecutively exploiting averaging in the frequency domain and channel truncation in the time domain. In addition, the method enhances the estimates further by iteratively executing this estimation procedure, and does not require any radio resources dedicated to SI channel estimation. Simulation results demonstrate that by significantly improving the SI channel estimation performance without requiring exact knowledge of the SI channel length, the proposed method achieves UL channel estimation performance and signal-to-interference-plus-noise ratio (SINR) performance very close to those in perfect SI cancellation.

Implementation of Self-Interference Signal Cancelation System in RF/Analog for In-Band Full Duplex (동일대역 전이중 통신을 위한 RF/아날로그 영역에서의 자기간섭 신호 제거 시스템 구현)

  • Lee, Jiho;Chang, Kapseok;Kim, Youngsik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.277-283
    • /
    • 2016
  • In this paper, a system of self-interference signal cancelation for in-band full duplex has been implemented and tested in RF/analog region. The system performance has been evaluated with NI5791 platform and NI Flex RIO. Due to the low power level of the NI5791, the RF signal is amplified by SKYWORKS SE2565T power amplifier. A circulator is used to feed the antenna both the transmitter and receiver. The RF FIR filter is designed by twelve delay taps in two different groups, and the interval between each delay tap is designed to have 100 ps. The amplified signal is distributed to antenna and the FIR filter by use of a 10 dB directional coupler. The tap coefficients of the RF FIR filter are tuned to estimate the self-interference signal coming from antenna reflection and the leakage of the circulator, and the self-interference signal is subtracted. The system is test with 802.11a/g 20 MHz OFMD at 2.56 GHz, and the output power of the amplifier of 0 dBm. The self-interference signal is canceled out by 53 dB.

A signal Detection Technique based on Compressed Sensing for Full-Duplex Generalized Spatial Modulation Systems (전 이중방식 일반화된 공간변조 시스템을 위한 압축센싱기반 신호검출기법)

  • Park, Jeonghong;Ban, Tae-Won;Jung, Bang Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.43-46
    • /
    • 2015
  • Recently, full-duplex communications has been considered as one of the most promising techniques for net-generation mobile communication system. In this paper, we propose a compressed sensing based signal detection technique for full-duplex generalized spatial modulation (FD-GSM) systems. In FD-GSM systems, some antennas are used for signal transmission according to input data and the otehrs are used for detecting signals received over the same frequency band. The self-interference (SI) is assumed to be completely removed by help for the recently proposed SI cancellation techniques. The proposed signal detection technique significantly outperforms the conventional ones in terms of symbol error rate (SER). We will investigate the optimal number of used antennas in FD-GSM systems.

  • PDF

Information leakage in bi-directional IFD communication system with simultaneously transmitted jamming sequence

  • Ju, Hyungsik;Gwak, Donghyuk;Kim, Tae-Joong
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.138-149
    • /
    • 2020
  • In this paper, we describe a simultaneously transmitted jamming (ST-jamming) for bi-directional in-band full-duplex (IFD) system to improve information security at the physical layer. By exploiting ST-jamming, each legitimate user transmits data samples and jamming samples together in one orthogonal frequency division multiplexing symbol according to given traffic asymmetry. Regardless of the traffic difference in both directions in IFD communication, eavesdropping of confidential information is prevented in both directions simultaneously without the loss of data rate. We first propose an encoding scheme and the corresponding decoding scheme for ST-jamming to be used by the legitimate users. In addition, we study a transceiver structure of the legitimate users including a baseband modem uniquely designed for the use of ST-jamming. The leakage of confidential information at an eavesdropper is then quantified by studying the mutual information between the confidential transmit signals and the received signals of the eavesdropper. Simulation results show that the proposed ST-jamming significantly reduces the leakage of legitimate information at the eavesdropper.

Design and Performance Evaluation of SSD (Simultaneous Single Band Duplex) System with HPA Nonlinearity (HPA 비선형 특성을 고려한 SSD(Simultaneous Single Band Duplex) 시스템의 설계와 성능 분석)

  • Keum, Hong-Sik;An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.23-31
    • /
    • 2015
  • In this paper, we design a SSD(simultaneous single band duplex) system using RF cancellation and digital cancellation. And then, we analyze performance of the SSD system using pre-distorter with HPA non-linearity. Also, we analyze digital cancellation performance of the SSD system using pre-distorter with HPA non-linearity. Additionally, digital cancellation cancels residual self-interference. In linear conditions, digital cancellation can cancel self-interference of 40dB. Therefore, the SSD system has good BER performance because most of self-interference is canceled. But, in HPA non-linearity conditions, digital cancellation cancels residual self-interference of 25dB. In this conditions, self-interference is greater than desired signal. Therefore, bit informations of distant station can not be received. But, we confirm that if the proposed system uses pre-distorter then bit information of distant station can be received by HPA non-linearity compensation. Also, we confirm that even though the proposed system uses pre-distorter, if HPA non-linearity increases then digital cancellation performance is degraded by imperfect compensation of HPA non-linerity.