• Title/Summary/Keyword: In-Wheel

Search Result 3,327, Processing Time 0.044 seconds

Development of a Belt Pick-up Type Two-row Sesame Reaper

  • Jun, Hyeon-Jong;Choi, Il-su;Kang, Tae-Gyoung;Kim, Young-Keun;Lee, Sang-Hee;Kim, Sung-Woo;Choi, Yong;Choi, Duck-Kyu;Lee, Choung-Keun
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.281-287
    • /
    • 2016
  • Purpose: The purpose of this study is to develop a walking-type two-row sesame reaper, which can simultaneously perform the cutting and collecting of sesame plants and other crops like perilla and soybean. Methods: The factors involved in reaping sesame were determined experimentally in order to design a prototype of the sesame reaper. The prototype is made up of four parts for cutting, conveying, collecting, and running. The height of two disc-plate saw blades on the cutting part is adjusted by an adjusting wheel, and peripheral speed is adjusted in accordance with the running speed. The conveying belt of the conveying part can be tilted from $0^{\circ}$ to $90^{\circ}$. The collecting part extracts a predetermined amount of transferred sesame plants. The prototype was used to evaluate the performance at different working speeds, so that the work efficiency can be calculated. Results: The center of gravity of the sesame plants was 900 mm, measured from the end of the cut stem. The diameter of the disc-plate saw blade was determined to be 355 mm, peripheral speed was 20.4-32.7 m/s, and the picking height of the conveying belt for sesame was 130 mm. The performance of transfer and collection of the sesame, when the insertion angles were $60^{\circ}$ and $90^{\circ}$, proved to be excellent. However, when the angle was over $120^{\circ}$, the performance was only 75-80%. The performance was at 100% efficiency when the ratio between running speed and conveying belt speed of the prototype was 1:2, which seems to be the ideal ratio for the sesame reaper. Conclusions: A sesame reaper was developed, which can integrate the processes of cutting, conveying, and collecting, by investigating and considering various factors involved in the reaping process. The sesame reaper can reduce the costs for yielding and producing sesame due to its highly efficient performance.

EFFECT OF CURING METHODS OF RESIN CEMENTS ON BOND STRENGTH AND ADHESIVE INTERFACE OF POST (레진시멘트의 중합방법이 포스트의 결합강도와 접착계면에 미치는 영향)

  • Kim, Mun-Hang;Kim, Hae-Jung;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.2
    • /
    • pp.103-112
    • /
    • 2009
  • The purpose of this study was to compare the effect of curing methods of adhesive resins and resin cements in the root canal. Crown portions of 32 single-rooted mandibular premolars were removed. Routine endodontic treatment was done, and 9 mm deep post spaces were prepared within root canals. No.3 FRC Postec posts (Ivoclar-Vivadent AG, Liechtensteih) were cemented in the post spaces by self-(SC) or light-curing (LC) using two dual-cured adhesives (Adper Scotchbond multi-purpose plus and Exite DSC )and resin cements (RelyX ARC and Variolink II). They were assigned to 4 groups (n=8): R-SC, R-LC, V-SC, V-LC group. After stored in distilled water for 24 hours, each root was transversally sectioned with 1.5 mm thick and made three slices. The specimens were subjected to push-out test in a universal testing machine (EZ Test, Shimadzu Co., Japan) with a crosshead speed of 1 mm/min. The data were analyzed with repeated ANOVA and one-way ANOVA. Also the interface of post-resin cement and resin cement-canal wall of each group was observed under FE-SEM. When fiber posts were cemented into the root canal using total-etch adhesives, the bond strength and adaptation between post and root canal dentin was affected by curing method. Self-cure of adhesives and resin cements showed higher bond strength and closer adaptation than light-cure of them.

The Response Prediction of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior (비선형 포장 하부 거동을 고려한 연성 포장의 해석)

  • Kim, Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.165-175
    • /
    • 2009
  • With the current move towards adopting mechanistic-empirical concepts in the design of pavement structures, state-of-the-art mechanistic analysis methodologies are needed to determine accurate pavement responses, such as stress, strain, and deformation. Previous laboratory studies of pavement foundation geomaterials, i.e., unbound granular materials used in base/subbase layers and fine-grained soils of a prepared subgrade, have shown that the resilient responses followed by nonlinear, stress-dependent behavior under repeated wheel loading. This nonlinear behavior is commonly characterized by stress-dependent resilient modulus material models that need to be incorporated into finite element (FE) based mechanistic pavement analysis methods to predict more realistically predict pavement responses for a mechanistic pavement analysis. Developed user material subroutine using aforementioned resilient model with nonlinear solution technique and convergence scheme with proven performance were successfully employed in general-purpose FE program, ABAQUS. This numerical analysis was investigated in predicted critical responses and domain selection with specific mesh generation was implemented to evaluate better prediction of pavement responses. Results obtained from both axisymmetric and three-dimensional (3D) nonlinear FE analyses were compared and remarkable findings were described for nonlinear FE analysis. The UMAT subroutine performance was also validated with the instrumented full scale pavement test section study results from the Federal Aviation Administration's National Airport Pavement Test Facility (FAA's NAPTF).

  • PDF

A Study on the Haptic Control Technology for Unmanned Military Vehicle Driving Control (무인차량 원격주행제어를 위한 힘반향 햅틱제어 기술에 관한 연구)

  • Kang, Tae-Wan;Park, Ki-Hong;Kim, Joon-Won;Kang, Seok-Won;Kim, Jae-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.910-917
    • /
    • 2018
  • This paper describes the developments to improve the feeling and safety of the remote control system of unmanned vehicles. Generally, in the case of the remote control systems, a joystick-type device or a simple steering-wheel are used. There are many cases, in which there are operations without considering the feedback to users and driving feel. Recently, as the application area of the unmanned vehicles has been extended, the problems caused by not considering the feedback are emphasized. Therefore, the need for a force feedback-haptic control arises to solve these problems. In this study, the force feedback-haptic control algorithm considering the vehicle parameters is proposed. The vehicle parameters include first the state variables of dynamics, such as the body side-slip angle (${\beta}$) and yawrate (${\gamma}$), and second, the parameters representing the driving situations. Force feedback-haptic control technology consists of the algorithms for general and specific situations, and considers the situation transition process. To verify the algorithms, a simulator was constructed using the vehicle dynamics simulation tool with CAN communication environment. Using the simulator, the feasibility of the algorithms was verified in various scenarios.

The Mechanical Properties of SMA Concrete Mixture Using Steel Slag Aggregate (제철 슬래그 골재를 이용한 SMA 혼합물의 역학적 특성)

  • Kim, Hyeok-Jung;Na, Il-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.109-116
    • /
    • 2021
  • In order to replace mineral aggregate used as road pavement materials with steel slag aggregate, this present study evaluated mechanical properties of SMA Concrete mixtures using steel slag aggregate as oxidized slag from electric furnace in iron works. The variables of this experiment are the aggregate type of mineral and steel slag and the sieve sized of 10mm and 13mm. The physical properties inclu ding the specific gravity and absorption rate etc. of the slag aggregate mixtu res satisfied the KS standard as asphalt mixtu re. As a resu lt of evalu ating the mechanical properties of the asphalt mixtures, the optimum asphalt content of the slag aggregate mixtures were lower than that of the mineral aggregate mixtures, but other quality standards were all satisfied. In the deformation strength evaluation, the slag aggregate mixtures were measu red slightly higher than that of the mineral aggregate mixtu res, and the dynamic stability test satisfied the 2,000pass/mm standard value in all specimens. And, the moduli of resilient of the slag aggregate mixtures showed an improved value compared with the mineral aggregate mixtures. Therefore, as the resilient rate of the slag aggregate mixtures improved, it is speculated that there will be an effect of improving public performance according to the repeated traffic load of the vehicle.

Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering shear lag, constrained torsion, distortion and biaxial slip

  • Li Zhu;Ray Kai-Leung Su;Wei Liu;Tian-Nan Han;Chao Chen
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.207-233
    • /
    • 2023
  • Steel-concrete composite box girder bridges are widely used in the construction of highway and railway bridges both domestically and abroad due to their advantages of being light weight and having a large spanning ability and very large torsional rigidity. Composite box girder bridges exhibit the effects of shear lag, restrained torsion, distortion and interface bidirectional slip under various loads during operation. As one of the most commonly used calculation tools in bridge engineering analysis, one-dimensional models offer the advantages of high calculation efficiency and strong stability. Currently, research on the one-dimensional model of composite beams mainly focuses on simulating interface longitudinal slip and the shear lag effect. There are relatively few studies on the one-dimensional model which can consider the effects of restrained torsion, distortion and interface transverse slip. Additionally, there are few studies on vehicle-bridge integrated systems where a one-dimensional model is used as a tool that only considers the calculations of natural frequency, mode and moving load conditions to study the dynamic response of composite beams. Some scholars have established a dynamic analysis model of a coupled composite beam bridge-train system, but where the composite beam is only simulated using a Euler beam or Timoshenko beam. As a result, it is impossible to comprehensively consider multiple complex force effects, such as shear lag, restrained torsion, distortion and interface bidirectional slip of composite beams. In this paper, a 27 DOF vehicle rigid body model is used to simulate train operation. A two-node 26 DOF finite beam element with composed box beams considering the effects of shear lag, restrained torsion, distortion and interface bidirectional slip is proposed. The dynamic analysis model of the coupled composite box girder bridge-train system is constructed based on the wheel-rail contact relationship of vertical close-fitting and lateral linear creeping slip. Furthermore, the accuracy of the dynamic analysis model is verified via the measured dynamic response data of a practical composite box girder bridge. Finally, the dynamic analysis model is applied in order to study the influence of various mechanical effects on the dynamic performance of the vehicle-bridge system.

Measurement and Discrimination Method for the Evaluation of Aero-Pulsation Noise Generated by the Turbocharger System (터보차저의 공기맥동음 평가를 위한 측정 및 판별법)

  • Kim, Jae-Heon;Lee, Jong-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.7
    • /
    • pp.361-365
    • /
    • 2007
  • Aero-pulsation noise, generally caused by geometric asymmetry of a rotating device, is one of considerable sources of annoyance in passenger cars using the turbocharged diesel engine. Main source of this noise is the compressor wheel in the turbocharger system, and can be reduced by after-treatment devices such as silencers, but which may increase the manufacturing cost. More effective solution is to improve the geometric symmetry over all, or to control the quality of components by sorting out inferior ones. The latter is more simple and reasonable than the former in view of manufacturing. Thus, an appropriate discrimination method should be needed to evaluate aero-pulsation noise level at the production line. In this paper, we introduce the accurate method which can measure the noise level of aero-pulsation and also present its evaluation criteria. Besides verifying the reliability of a measurement system - a rig test system-, we analyze the correlation between the results from rig tests and those from vehicle tests. The gage R&R method is carried out to check the repeatability of measurements over 25 samples. From the result, we propose the standard specification which can discriminate inferior products from superior ones on the basis of aero-pulsation noise level.

Process of Coping with Domestic Violence of Marriage Immigrant Women (결혼 이주 여성의 가정폭력 대처과정에 관한 근거이론 접근)

  • Ko, Ki-Sook;Jeong, Mee-Kyung
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.10
    • /
    • pp.254-279
    • /
    • 2012
  • This research aims to suggest a practical solution in order to make marriage immigrant women free from violence and stand on their own. The suggestion could be made by developing Substantive theory in terms of marriage immigrant women's coping with domestic violence. The research question is; How marriage immigrant women cope with domestic violence. The research used a route theory approach, and 11 of marriage immigrant women who have ever suffered from domestic violence participated in it. The research question used semi-structured open questions. As a result of paradigm model analysis, "mental and physical devastation" is defined as a core phenomenon, and causative conditions are "wheel of pain" and "helpless victims of violence". Besides, context conditions are "period growth with solitariness", "irrational marriage" and "indifferent reality". "Mental and physical devastation", the core phenomenon act and interact with effect of mediatory conditions; which are "social help", "cultural difference" and "helplessness". Here the action and reaction appear as "adaptation", "resistance", "self-protection" and "self-reinforcement", and the outcomes show up as "maintaining reality", "decision making" and "beginning a new life". "Coping with mental and physical devastation and standing on one's own feet" could be introduced as a core category. Process of coping with domestic violence presents its levels as; shocks ${\rightarrow}$ endurance ${\rightarrow}$ regret ${\rightarrow}$ overcoming. There are three patterns of coping, which are; "preserving realities", "returning", and "groping for the future".

Development of a Korean Diet Score (KDS) and its application assessing adherence to Korean healthy diet based on the Korean Food Guide Wheels

  • Lee, Myoungsook;Chae, Soo Wan;Cha, Youn-Soo;Cho, Mi Sook;Oh, Hea Young;Kim, Mi Kyung
    • Nutrition Research and Practice
    • /
    • v.7 no.1
    • /
    • pp.49-58
    • /
    • 2013
  • The most critical point in the assessment of adherence to dietary guidelines is the development of a practical definition for adherence, such as a dietary pattern score. The purpose of this study was to develop the Korean Diet Score (KDS) based on the Korean Food Balance Wheel and to examine the association of KDS with various lifestyle characteristics and biochemical factors. The dietary data of 5,320 subjects from the 4th Korean National Health and Nutritional Examination Survey were used for the final analysis. The food guide was composed of six food group categories; 'grain dishes', 'fish and meat dishes', 'vegetable dishes', 'fruits', 'milk' and 'oils and sugars'. Based on the recommended serving numbers for each group, the scores measuring adherence to this food guide were calculated from the dietary information from the 24-hour dietary recall questionnaire, and then its correlation with various characteristics was assessed. KDS was significantly associated with several clinical, lifestyle and socioeconomic factors as well as diagnosed disease history. The higher quintile group of KDS showed a significantly lower level in fasting blood glucose, systolic blood pressure, triglycerides, current smoking and drinking as well as higher leisure time activity, house income and education. Furthermore, the KDS quintile group of women was inversely associated with hypertension, osteoporosis and diabetes. A higher KDS quintile was characterized with a higher intake of several critical nutrients, such as Ca, Fe and vitamins as well as a desirable nutrition balance such as the ratio of macronutrients. Our results demonstrate that KDS is a beneficial tool in assessing the adherence to a healthy diet based on the Korean dietary guidelines. We suggest that KDS could be a useful indicator for evaluating the dietary balance of the Korean population.

Study on the improvement of prediction model for the railway environmental noise using ISO 9613-2 (ISO 9613-2를 이용한 철도 환경소음 예측 모델 개선에 관한 연구)

  • Jang, Seungho;Koh, Hyo-In;Hong, Jiyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.1
    • /
    • pp.11-26
    • /
    • 2017
  • Approximate empirical equations obtained by measuring overall noise levels at different distances have been used to evaluate environmental influence of the railway noise though the accurate prediction of noise levels is important. In this paper, a noise prediction model considering the frequency characteristics of noise sources and propagation was suggested to improve the accuracy of noise prediction. The railway noise source was assorted into track, wheel, traction and aerodynamic components and they were characterized with the source strength and speed coefficient at each octave-band frequency. Correction terms for the acoustic roughness and the track/bridge condition were introduced. The sound attenuation from a source to a receiver was calculated taking account of the geometrical divergence, atmospheric absorption, ground effect, diffraction at obstacles and directivity of source by applying ISO 9613-2. For obtaining the source strength and speed coefficients, the results of rolling noise model, numerical analysis and measurements of pass-by noise were analyzed. We compared the predicted and measured noise levels in various vehicles and tracks, and verified the accuracy of the present model. It is found that the present model gives less error than the conventional one, so that it can be applied to make the accurate prediction of railway noise effect and establish its countermeasures efficiently.