• Title/Summary/Keyword: In-Situ Stress

Search Result 505, Processing Time 0.031 seconds

Fatigue Crack-Tip Stress Mapping Using Neutron Diffraction

  • Choi, Gyudong;Lee, Min-Ho;Huang, E-Wen;Woo, Wanchuck;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.690-693
    • /
    • 2015
  • Fatigue crack growth experiments were carried out on a 304 L stainless steel compact-tension(CT) specimen under load control mode. Neutron diffraction was employed to quantitatively measure the residual strains/stresses and the evolution of stress fields in the vicinity of a propagating fatigue-crack tip. Three principal stress components (i.e. crack growth, crack opening, and through-thickness direction stresses) were examined in-situ under loading as a function of distance from the crack tip along the crack-propagation path. The stress/strain fields, measured both at the mid-thickness and near the surface of the CT specimen, were compared. The results show that much higher compressive residual stress fields developed in front of the crack tip near the surface than developed at the mid-thickness area. The change of the stresses ahead of the crack tip under loading is more significant at the mid-thickness area than it is near the surface.

The evaluation of fracture characteristics and the analysis of stress distribution of ferromagnetic materials by Barkhausen noise method (자기적 비파괴 방법으로서의 Barkhausen Noise를 이용한 강자성체의 파괴인성 및 응력분포해석)

  • Kim, Dong-Won;Kwon, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1864-1866
    • /
    • 1999
  • The magnetic nondestructive test can be applied to evaluate the magnetic material characteristics and the fracture properties through the internal defects of SA-508 used in the pressure vessels of the nuclear power plants as the direct and accurate in-situ testing methods. The fracture toughness, yield strength and the stress distribution around the defects in the surface and sub-surface of magnetic materials can be directly estimated by Bark-hausen noise(BN) methods as NDT. The testing process of SA-508 by Barkhausen noise method was advanced by controlling the austenizing peak temperature and the time of maintenance at a constant austenizing peak temperature, therefore causing the variation of fracture toughness. Through above process. we can evaluate the variations of effective grain size and the correlation of effective grain size and FATT at each situation. And the stress distribution around the defects can be quantified nondestructively through Barkhausen method.

  • PDF

A Study on the Evaluation of Overconsolidation Ratio of Marine Clay by Flat DMT (DMT를 이용한 해성점토의 과압밀비 추정에 관한 연구)

  • Jeong, Hyeok;Kim, Jong-Kook;Chae, Young-Su;Yoon, Won-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.979-986
    • /
    • 2008
  • In this study, it enforced DMT test, CPTu test, laboratory consolidation test, because it estimated stress history of Gwangyang port marine clay. Through DMT test obtained Horizontal stress index($K_D$), predicted overconsolidation ratio by $K_D$. To compare empirical equation with laboratory consolidation test and CPTu test calculated OCR examined application. The result, Powell & Uglow(1988) method underestimated OCR value in comparison with Suggestion. Comparatively Byeon wi yong(2004) and Chang(1991) method seem to exactly predict in-situ stress states. Sugawara(1988) method of CPTu test seems to underestimate OCR.

  • PDF

The Estimation Method of Preconsolidation Pressure for Soft Ground (연약지반의 선행압밀하중 산정방법에 관한 연구)

  • Kim, Byung-Il;Lee, Dong-Hyun;Kim, Sung-Shin;Kim, Chang-Dong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1218-1223
    • /
    • 2006
  • In this study a series of in-situ and laboratory tests such as SPT, CPT, DMT and oedometer test are performed and then the stress history of soft ground is evaluated from the different method for estimating preconsolidation pressure. Casagrande method(1936), which is generally used in the conventional design, overestimates to the known preconsolidation pressure but Becker method(1987) similarly estimates to the known values. Also the results of DMT is similar to that of Becker method, and SPT and CPT overestimates the stress history of investigated ground.

  • PDF

In Situ Mechanical Response of Bovine Humeral Head Articular Cartilage in a Physiological Loading Environment (생리학적인 하중 조건에서 소 상완골 연골의 기계적 특성)

  • Park, Seong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.145-150
    • /
    • 2008
  • One of the unresolved questions in articular cartilage biomechanics is the magnitude of the dynamic modulus and tissue compressive strains under physiological loading conditions. The objective of this study was to characterize the dynamic modulus and compressive strain magnitudes of bovine articular cartilage at physiological compressive stress level and loading frequency. Four bovine calf shoulder joints (ages 2-4 months) were loaded in Instron testing system under load control, with a load amplitude up to 800 N and loading frequency of 1 Hz, resulting in peak engineering stress amplitude of ${\sim}5.8\;MPa$. The corresponding peak deformation of the articular layer reached ${\sim}27%$ of its thickness. The effective dynamic modulus determined from the slope of stress versus strain curve was ${\sim}23\;MPa$, and the phase angle difference between the applied stress and measured strain which is equivalent to the area of the hystresis loop in the stress-strain response was ${\sim}8.3^{\circ}$. These results are representative of the functional properties of articular cartilage in a physiological loading environment. This study provides novel experimental findings on the physiological strain magnitudes and dynamic modulus achieved in intact articular layers under cyclical loading conditions.

A Study on the Stress Induced Brittle Failure around Openings with Cross-sectional Shape by Scaled Model Test and DEM Simulation (모형시험과 개별요소법을 이용한 단면 형상에 따른 공동 주변 취성파괴에 관한 연구)

  • Bae, Seong-Ho;Jeon, Seok-Won;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.389-410
    • /
    • 2007
  • For moderately jointed to massive rock masses, the failure and deformation behaviors around an excavated opening are absolutely influenced by the initial rock stress and strength of in-situ rock mass. The localized and progressive brittle failure around an opening does not mean whole collapse of an excavated opening. But, for many cases, it may induce temporary stopping of excavation works and reexamination of the current supporting system, which can result in delay of the entire construction works and additional construction cost. In this paper, the characteristics of the brittle failure around an opening with stress level and tunnel shape was studied by the biaxial compressive test using scaled specimen and by the numerical simulation with $PFC^{2D}$. The biaxial test results were well coincided with the stress induced failure patterns around the excavated openings observed and monitored in the in-situ condition. For the circular part of the opening wall, the stress induced cracks initially occurred at the wall surface in the direction of the minimum principal stress and contributed to the localized notch shaped failure region having a certain range of angle. But for the corner and straight part of the opening wall, the cracks initiated at sharp corners were connected and coalesced each other and with existing micro cracks. Further they resulted in a big notch shaped failure region connecting two sharp corners.

Dedicated preparation for in situ transmission electron microscope tensile testing of exfoliated graphene

  • Kim, Kangsik;Yoon, Jong Chan;Kim, Jaemin;Kim, Jung Hwa;Lee, Suk Woo;Yoon, Aram;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.49
    • /
    • pp.3.1-3.7
    • /
    • 2019
  • Graphene, which is one of the most promising materials for its state-of-the-art applications, has received extensive attention because of its superior mechanical properties. However, there is little experimental evidence related to the mechanical properties of graphene at the atomic level because of the challenges associated with transferring atomically-thin two-dimensional (2D) materials onto microelectromechanical systems (MEMS) devices. In this study, we show successful dry transfer with a gel material of a stable, clean, and free-standing exfoliated graphene film onto a push-to-pull (PTP) device, which is a MEMS device used for uniaxial tensile testing in in situ transmission electron microscopy (TEM). Through the results of optical microscopy, Raman spectroscopy, and TEM, we demonstrate high quality exfoliated graphene on the PTP device. Finally, the stress-strain results corresponding to propagating cracks in folded graphene were simultaneously obtained during the tensile tests in TEM. The zigzag and armchair edges of graphene confirmed that the fracture occurred in association with the hexagonal lattice structure of graphene while the tensile testing. In the wake of the results, we envision the dedicated preparation and in situ TEM tensile experiments advance the understanding of the relationship between the mechanical properties and structural characteristics of 2D materials.

Validation Study of Gridded Product of Surface Wind/Wind-stress derived by Satellite Scatterometer Data in the Western North Pacific using Kuroshio Extension Observatory Buoy

  • Kutsuwada, Kunio;Morimoto, Naoki;Koyama, Makoto
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.394-397
    • /
    • 2006
  • Gridded products of surface wind/wind-stress over the world ocean have been constructed by using satellite scatterometer as the Japanese Ocean Flux data sets with Use of Remote-sensing Observation (J-OFURO) data. Our previous validation study in the tropical Pacific using TAO/Triton and NDBC buoys revealed high reliability of our products. In this study, the Kuroshio Extension Observatory (KEO) buoy data are used for validation of other gridded wind-stress products including the NCEP-1 and 2 in the western North Pacific region where there have been few in-situ data. Results reveal that our J-OFURO product has almost zero mean difference and smallest root-mean-square (RMS) difference, while the NCEP-1 and 2 ones significantly positive biases and relatively high RMS difference. Intercomparison between the J-OFURO and NCEP products in a wide region of the North Pacific covered by the westerly winds exhibits that the NCEPs have larger magnitudes in the wind stress than the J-OFURO's, suggesting overestimation of the NCEPs.

  • PDF

Effect of confining stress on representative elementary volume of jointed rock masses

  • Wu, Na;Liang, Zhengzhao;Li, Yingchun;Qian, Xikun;Gong, Bin
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.627-638
    • /
    • 2019
  • Estimation of representative elementary volume (REV) of jointed rock masses is critical to predict the mechanical behavior of field-scale rock masses. The REV of jointed rock masses at site is strongly influenced by stress state. The paper proposed a method to systematically studied the influence of confining stress on the REV of jointed rock masses with various strengths (weak, medium and strong), which were sourced from the water inlet slope of Xiaowan Hydropower Station, China. A finite element method considering material heterogeneity was employed, a series of two-dimensional (2D) models was established based on the Monte-Carlo method and a lot of biaxial compressive tests were conducted. Numerical results showed that the REV of jointed rock masses presented a step-like reduction as the normalized confining stress increased. Confining stress weakened the size effect of jointed rock masses, indicating that the REV determined under uniaxial compression test can be reasonably taken as the REV of jointed rock masses under complexed in-situ stress environment.

Stability Analysis of Mine Roadway Using Laboratory Tests and In-situ Rock Mass Classification (실내시험과 현장암반분류를 이용한 광산갱도의 안정성 해석)

  • Kim, Jong Woo;Kim, Min Sik;Lee, Dong Kil;Park, Chan;Jo, Young Do;Park, Sam Gyu
    • Tunnel and Underground Space
    • /
    • v.24 no.3
    • /
    • pp.212-223
    • /
    • 2014
  • In this study, the stability analyses for metal mine roadways at a great depth were performed. In-situ stress measurements using hydrofracturing, numerous laboratory tests for rock cores and GSI & RMR classifications were conducted in order to find the physical properties of both intact rock and in-situ rock mass distributed in the studied metal mine. Through the scenario analysis and probabilistic assessment on the results of rock mass classification, the in-situ ground conditions of mine roadways were divided into the best, the average and the worst cases, respectively. The roadway stabilities corresponding to the respective conditions were assessed by way of the elasto-plastic analysis. In addition, the appropriate roadway shapes and the support patterns were examined through the numerical analyses considering the blast damaged zone around roadway. It was finally shown to be necessary to reduce the radius of roadway roof curvature and/or to install the crown reinforcement in order to enhance the stability of studied mine roadways.