• 제목/요약/키워드: In-Situ Soil

검색결과 758건 처리시간 0.028초

불포화토 칼럼시험을 통한 불포화토 내 강우침투속도 분석: 편마암 풍화토와 화강암 풍화토의 비교 (Analysis of Rainfall Infiltration Velocity for Unsaturated Soils by an Unsaturated Soil Column Test : Comparison of Weathered Gneiss Soil and Weathered Granite Soil)

  • 박규보;채병곤;김경수;박혁진
    • 자원환경지질
    • /
    • 제44권1호
    • /
    • pp.71-82
    • /
    • 2011
  • 본 연구는 국내에서 산사태 발생빈도가 높은 선캠브라아기 편마암 풍화토와 백악기 화강암 풍화토를 대상으로 하여 불포화 풍화토별 강우강도 및 흙의 단위중량에 따른 강우침투속도 관계를 파악하기 위하여 불포화 풍화토 칼럼시험을 하였다. 본 연구에서는 일정시간 간격으로 체적함수비, 간극수압 등을 TDR센서와 간극수압계를 통해 측정하였다. 현장 건조단위중량을 기준으로 느슨한 조건, 현장조건, 조밀한 조건으로 선정하고, 강우강도를 20 mm/h와 50 mm/h로 선정하여 시험을 수행하였다. 강우강도 20 mm/h 조건에서 각 단위중량 조건별 편마암 풍화토와 화강암 풍화토의 평균 강우침투속도는 각각 $2.854{\times}10^{-3}$ cm/s ~ $1.297{\times}10^{-3}$ cm/s와 $2.734{\times}10^{-3}$ cm/s ~ $1.707{\times}10^{-3}$ cm/s였으며, 강우강도 50 mm/h 조건에서는 각 풍화토별로 $4.509{\times}10^{-3}$ cm/s ~ $2.016{\times}10^{-3}$ cm/s와 $4.265{\times}10^{-3}$ cm/s ~ $3.764{\times}10^{-3}$ cm/s로 나타났다. 시험결과 강우강도가 높고 흙의 단위중량이 낮을수록 평균 강우침투속도는 증가하였으며, 느슨한 조건을 제외한 모든 조건에서 화강암 풍화토의 강우침투속도가 편마암 풍화토의 강우침투속도보다 빠르게 나타났다. 이는 화강암 풍화토가 편마암 풍화토에 비해서 입도가 비교적 균질하며, 단위중량이 낮고 공극율이 큰 것이 그 원인으로 판단된다.

휴대용콘의 선단저항값을 이용한 모래의 상대밀도 및 내부마찰각 추정 (Estimation of the Relative Density and Internal Friction Angle for Sand using Cone-tip Resistance of the PCPT)

  • 박재성;손영환;노수각;봉태호
    • 한국농공학회논문집
    • /
    • 제54권4호
    • /
    • pp.137-145
    • /
    • 2012
  • Sand is one of the essential materials used for social infrastructure construction such as embankment, landfill and backfill. It was known that mechanical properties and shear strength of sand are closely related to relative density. Therefore it is very important to determine accurate relative density. In this study, Portable Cone Penetration Tester (PCPT) was used to estimate the relative density and the internal friction angle of sand. PCPT cone-tip resistance ($q_c$) was measured changing the relative density of the two soil samples.Standard sand (JMJ) and Busan sand (BS). Also, a direct shear test was performed to investigate relationship between relative density and internal friction angle. The size and shape of soil particles were confirmed by using Scanning Electron Microscope (SEM). As a result, the log value of $q_c$ was linearly correlated with relative density and internal friction angle. In particular, the internal friction angle of BS sample was greater than that of JMJ, which was due to difference of the shape and mean size of particles. This result shows that it is important to determine the shape and size of particles as well as relative density to define mechanical property of sand. Through this study, it can be more effectively and conveniently to investigate relative density and shear strength of sand by using PCPT in situ.

대변형 해석기법(Coupled Eulerian-Lagrangian)을 이용한 항타 관입성 모사의 3차원 해석 (A Study on the 3D Analysis of Driven Pile Penetration Based on Large Deformation Technique (Coupled Eulerian-Lagrangian))

  • 고준영;정상섬;이승연
    • 한국지반공학회논문집
    • /
    • 제31권8호
    • /
    • pp.29-38
    • /
    • 2015
  • 최근 기존의 유한요소 해석기법으로는 항타 말뚝 관입과 같은 대변형 문제를 적절히 모사하기 어렵기 때문에 대변형 해석기법을 필요로 하고 있다. 본 연구에서는 대변형 수치해석 기법 중 하나인 Coupled Eulerian-Lagrangian(CEL) 기법을 이용하여 항타 관입의 3차원 대변형 해석을 수행하고자 한다. 현장 시험 결과와 비교를 통해, CEL 기법의 타당성을 검증하였고, 그 결과 본 연구에서 적용한 CEL 기법이 기존 유한요소 해석 기법으로는 구현이 불가능한 항타 말뚝 관입의 전반적인 거동을 합리적으로 모사할 수 있음을 알 수 있었다. 또한, 항타 개단말뚝의 특징인 선단부근에 응력이 집중되는 현상을 적절히 예측함을 알 수 있었다. 이를 통해 CEL 기법을 이용하여 항타 관입 해석이 가능한 것을 확인하였다.

무소음·무진동을 위한 환경친화적인 스크류콘크리트말뚝의 시공법에 따른 말뚝 인접 지반의 강도 회복 특성 (A Characteristics of the Strength Recovery of the Soil Adjacent to the Pile Depending on the Construction Methods of a Environment-friendly Screw Concrete Pile for a Noise- and Vibration-free Method)

  • 김동철;최용규
    • 한국지반공학회논문집
    • /
    • 제29권1호
    • /
    • pp.71-80
    • /
    • 2013
  • 2가지 시공법(즉 선단분출형슈방식, 선행굴착방식)으로 시공한 무소음 무진동을 위한 스크류콘크리트말뚝의 인접지반에서 시공 전 후 및 11개월 경과 시 원위치시험(CPT, SPT)을 실시하였다. 선단분출형슈방식 시공법의 경우 시공 직후 말뚝 중심~3.5D(여기서 D : 말뚝직경)의 영역에 있는 지반의 강도는 원지반 강도의 46%정도로 크게 감소하였으며 시공 후 약 11개월 경과 시 말뚝 인접 지반의 강도회복은 원 지반 강도의 71%정도로 나타났다. 선행굴착방식 시공법의 경우 11개월 경과 시 말뚝 인접 지반의 강도는 원지반의 전단강도까지 회복되는 것으로 나타났다.

역해석기법을 이용한 앵커지지 흙막이벽체의 수치해석 (Numerical Analysis of Anchored In-situ wall using Back-Analysis Technique)

  • 우제일;정대석
    • 한국재난정보학회 논문집
    • /
    • 제16권1호
    • /
    • pp.1-9
    • /
    • 2020
  • 연구목적: 본 연구에서는 수치해석을 통한 역해석기법을 이용 현장변위예측관리기법을 보완하는 안전관리 방안에 대한 연구를 수행하였다. 연구방법: 역해석기법을 이용하여 유한요소해석 기반인 MIDAS GTS/NX 프로그램을 이용 해석을 수행하였다. 붕괴현장의 계측데이터와 변위 경향을 가능한 근접시킨 뒤, 붕괴원인을 추정 후 붕괴방지 공법을 적용하였다. 연구결과: 역해석을 수행하여 얻은 결과물중 하나인 지반정수로 붕괴원인을 추정한 결과 앵커의 자유장 길이 불충분으로 확인 되었고, 붕괴방지 공법으로 앵커의 자유장 길이를 변화시켰으며, 변위가 현저히 감소되는 것을 확인할 수 있었다. 결론: 역해석기법을 현장관리에 참고, 붕괴원인을 추정하고 합리적인 붕괴방지 대책을 제시할 경우 붕괴 사고를 줄이는데 도움이 될 것이다.

지하수 오염복원에서 현장규모 이방성의 효과 (Effects of Site-scale Anisotropy of an Aquifer on Groundwater Remediation)

  • 이재민;이병선;우남칠
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권6호
    • /
    • pp.17-28
    • /
    • 2010
  • As a preliminary survey to improve efficiency of well-based permeable reactive barrier system for groundwater remediation, this site-scale study was carried to identify the flowpaths and controlling factors of plume at a remediation site in Suwon City, Korea. A total of 22 monitoring wells were installed as a grid system in the $4m{\times}4m$ square area by 1-m interval. For the groundwater characterization, various tests were performed including water-level monitoring, water sampling & analysis, pumping and slug tests, and tracer tests. The aquifer appeared to be unconfined with hydraulic conductivities (K) ranging from $2.6{\times}10^{-4}cm/s$ to $9.5{\times}10^{-3}cm/s$. The average linear velocity of groundwater was estimated to be $2.94{\times}10^{-6}m/s$, and the longitudinal dispersivity of a conservative tracer to be $5.94{\times}10^{-7}m^2/s$. Groundwater plume moves preferentially through the high-K zones, and the relatively high ion concentrations along the low-K zones implying deterred groundwater flow. Consequently, the spatial variation of hydraulic conductivity caused by aquifer heterogeneity and anisotropy appears to be the most important factor to maximize the effect of plume treatment system for application of in-situ groundwater remediation techniques.

TCE 오염 지하수의 정화를 위한 나노영가철 기반 반응존 공법의 현장 적용성 연구 (Field Study on Application of Reactive Zone Technology Using Zero-Valent Iron Nanoparticles for Remediation of TCE-Contaminated Groundwater)

  • 안준영;김철용;황경엽;전성천;황인성
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권6호
    • /
    • pp.80-90
    • /
    • 2014
  • The laboratory and field studies were conducted to identify an optimal injection concentration of nanoscale zero-valent iron particles (NZVI) and to evaluate the applicability of NZVI-based reactive zone technology to the site contaminated with trichloroethylene (TCE) DNAPL (Dense Non-Aqueous Phase Liquid). The laboratory test found an optimal injection concentration of NZVI of 5 g/L that could remove more than 95% of 0.15 mM TCE within 20 days. Eleven test wells were installed at the aquifer that was mainly composed of alluvial and weathered soils at a strong oxic condition with dissolved oxygen concentration of 3.50 mg/L and oxidation-reduction potential of 301 mV. NZVI of total 30 kg were successfully injected using a centrifugal pump. After 60 days from the NZVI injection, 86.2% of the TCE initially present in the groundwater was removed and the mass of TCE removed was 405 g. Nonchlorinated products such as ethane and ethene were detected in the groundwater samples. Based on the increased chloride ion concentration at the site, the mass of TCE removed was estimated to be 1.52 kg. This implied the presence of DNAPL TCE which contributed to a higher estimate of TCE removal than that based on the TCE concentration change.

농경지 중금속 안정화 방법의 효율성 및 지속성 평가 (Efficiency and Longevity of In-situ Stabilization Methods in Heavy Metal Contaminated Arable Soils)

  • 김서준;오세진;김성철;이상수
    • 한국환경농학회지
    • /
    • 제37권3호
    • /
    • pp.179-188
    • /
    • 2018
  • BACKGROUND: Reclamation of heavy metal-contaminated agricultural fields has intensively been done to ensure the soil quality and food security. This study evaluated the efficiency and longevity of current physical and chemical approaches for heavy metal-contaminated soils. METHODS AND RESULTS: Concentrations of 0.1 N HCl-leachable trace metals of Cd, Pb, and As from the stabilizing agents-treated soils decreased by 50%, 70%, and 40%, respectively, compared to the control. Among the stabilizing agents, the $CaCO_3$ was the best for stabilization. For physical stabilization, the soil dressing reduced the concentrations of Cd, Pb, and As by 88%, 94%,and 88%, respectively, compared to the control. Moreover, the dilution of the contaminated soils decreased the metals by an average of 25.3% when compared with the control. The longevity of each stabilization method was determined by using the availability assessment of heavy metals in the soils. Results showed that the leaching methods using HCl and $NH_4NO_3$ had 120 and 32 weeks longevity, respectively. Interestingly, any stabilization efficacy was not found over the time for Cd and Pb (i.e., cation metals), whereas the stabilization efficacy of As was sharply decreased under 50% after 32 weeks. However, the change of metal concentration was not significant with the physical stabilization compared to the chemical stabilization. CONCLUSION: The stabilization methods should carefully be selected based on long-term monitoring under climate conditions.

Mass Loss Rates and Nutrient Dynamics of Decomposing Fine Roots in a Sawtooth Oak and a Korean Pine Stands

  • Kim, Choonsing
    • 한국생태학회:학술대회논문집
    • /
    • 한국생태학회 2002년도 VIII 세계생태학대회
    • /
    • pp.101-105
    • /
    • 2002
  • Fine root decomposition and nutrient release patterns were examined using in situ buried fine root (< 2mm in diameter) bags inserted vertically into the mineral soil to a depth of the top 15 cm in a sawtooth oak (Quercus acutissima) and a Korean pine (Pinus korainesis) stands in the Jungbu Forest Experiment Station, Kyonggi-do, Korea. The pine roots compared with the oak roots showed rapid mass loss in early stages of decomposition, but decomposed similarly after 12 months of incubation. Decomposition rates of fine roots were about 33%/yr for the oak roots and 37%/yr for the pine roots. Nutrients except for calcium and phosphorus showed similar concentrations between the oak and the pine roots during the study period. However, calcium concentration was significantly higher in the oak than in the pine roots. Nutrient concentrations in both stands except for nitrogen decreased during the study period. In addition, potassium compared with other nutrients was the most mobile ion and about 70% of initial amount was released during the first 3 months of incubation. The results indicate that tree species influence mass loss and nutrient dynamics of fine roots on similar site conditions.

  • PDF

Mass Loss Rates and Nutrient Dynamics of Decomposing Fine Roots in a Sawtooth Oak and a Korean Pine Stands

  • Kim, Choonsig
    • The Korean Journal of Ecology
    • /
    • 제25권4호
    • /
    • pp.235-239
    • /
    • 2002
  • Fine root decomposition and nutrient release patterns were examined using in situ buried fine root (< 2mm in diameter) bags inserted vertically into the mineral soil to a depth of the top 15 cm in a sawtooth oak (Quercus acutissima) and a Korean pine (Pinus korainesis) stands in the Jungbu Forest Experiment Station, Kyonggi-do, Korea. The pine roots compared with the oak roots showed rapid mass loss in early stages of decomposition, but decomposed similarly after 12 months of incubation. Decomposition rates of fine roots were about 33%/yr for the oak roots and 37$\%$/yr for the pine roots. Nutrients except for calcium and phosphorus showed similar concentrations between the oak and the pine roots during the study period. However, calcium concentration was significantly higher in the oak than in the pine roots. Nutrient concentrations in both stands except for nitrogen decreased during the study period. In addition, potassium compared with other nutrients was the most mobile ion and about 70$\%$ of initial amount was released during the first 3 months of incubation. The results indicate that tree species influence mass loss and nutrient dynamics of fine roots on similar site conditions.