DOI QR코드

DOI QR Code

A Study on the 3D Analysis of Driven Pile Penetration Based on Large Deformation Technique (Coupled Eulerian-Lagrangian)

대변형 해석기법(Coupled Eulerian-Lagrangian)을 이용한 항타 관입성 모사의 3차원 해석

  • 고준영 (연세대학교 토목환경공학과) ;
  • 정상섬 (연세대학교 토목환경공학과) ;
  • 이승연 (연세대학교 토목환경공학과)
  • Received : 2015.04.25
  • Accepted : 2015.08.12
  • Published : 2015.08.31

Abstract

This paper presents the application of the Coupled Eulerian-Lagrangian (CEL) numerical technique to simulate the driving of open-ended piles into sandy soil. The main objective of this study was to investigate the applicability of CEL technique to the behavior of the driven pile penetration. Comprehensive studies to verify the behavior of driven pile penetration are presented in this paper. Through comparison with results of field load tests, the CEL methodology was found to be in good agreement with the general trend observed by in situ measurement, and the CEL approach accurately simulated the behavior of driven pipe piles.

최근 기존의 유한요소 해석기법으로는 항타 말뚝 관입과 같은 대변형 문제를 적절히 모사하기 어렵기 때문에 대변형 해석기법을 필요로 하고 있다. 본 연구에서는 대변형 수치해석 기법 중 하나인 Coupled Eulerian-Lagrangian(CEL) 기법을 이용하여 항타 관입의 3차원 대변형 해석을 수행하고자 한다. 현장 시험 결과와 비교를 통해, CEL 기법의 타당성을 검증하였고, 그 결과 본 연구에서 적용한 CEL 기법이 기존 유한요소 해석 기법으로는 구현이 불가능한 항타 말뚝 관입의 전반적인 거동을 합리적으로 모사할 수 있음을 알 수 있었다. 또한, 항타 개단말뚝의 특징인 선단부근에 응력이 집중되는 현상을 적절히 예측함을 알 수 있었다. 이를 통해 CEL 기법을 이용하여 항타 관입 해석이 가능한 것을 확인하였다.

Keywords

References

  1. ABAQUS. (2013), ABAQUS user's and theory manuals, Version 6.13. rhode island: Hibbitt, Karlsson & Sorensen, Inc.
  2. Beringen, F. L., Windle, D., and Van Hooydonk, W. R. (1979), "Results of Loading Tests on Driven Piles in Sand", Proceedings of the Conference on Recent Development in the Design and Construction of Piles, ICE, London, Vol.21-22, pp.213-225.
  3. Chow, F. C. (1997), "Investigation into the behaviour of Displacement Piles for Offshore Foundation", Ph.D. thesis, University of London (Imperial College), London, UK.
  4. Goble, G. G., Raushe, F. R., and Likins, G. E. (1980), "The Analysis of Pile Driving-a State-of-the-art", Proceedings of International Seminar on the Application of Stress-Wave Theory on Piles, Stockholm, Sweden, pp.131-162.
  5. Jeong, S. S., Lee, K. W., Kim, Y. M., and Kim, J. H. (2014), "A Study on the Landslide/debris Flow based on Large Deformation Analysis", Proceedings of the 40th KSCE Conference, Daegu, Korea, pp.271-272.
  6. Kim, Y. H. and Jeong, S. S. (2014), "Analysis of Dynamically Penetrating Anchor based on Coupled Eulerian-Lagrangian (CEL) Methods", Journal of the Korean Society of Civil Engineers, Vol. 34, No.3, pp.895-906. https://doi.org/10.12652/Ksce.2014.34.3.0895
  7. Kishida, H. (1967), "The Ultimate Bearing Capacity of Pipe Piles in Sand", Proceedings of 3rd Asian Regional Conference on Soil Mechanics and Foundation Engineering, pp.196-199.
  8. Klos, J. and Tejchman, A. (1981), "Bearing Capacity Calculation for Pipe Piles", Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, Vol.2, pp.751-754.
  9. Ko, J. Y. and Jeong, S. S. (2014), "Analysis of Plugging Effect for Open-ended Piles based on Field Tests", Journal of Korean Geotechnical Society, Vol.30, No.12, pp.51-61. https://doi.org/10.7843/KGS.2014.30.12.51
  10. Ko, J. Y. and Jeong, S. S. (2015), "Plugging Effect of Open-ended Piles in Sandy Soil", Canadian Geotechnical Journal, Vol.52, No.5, pp.535-547. https://doi.org/10.1139/cgj-2014-0041
  11. Lee, K. W., Kim, Y. M., Kim, J. H., and Jeong, S. S. (2014), "A Study on the Landslide/debris Flow Considering the Erosion and Entrainment of Bed Sediment", Proceedings of KGS fall national conference, Seoul, Korea, pp.169-174.
  12. Lehane, B. M. (1992), "Experimental Investigation of Pile behaviour Using Instrumented Field Piles", Ph.D. thesis, University of London (Imperial College), London, UK.
  13. Mabsout, M. E., Reese, L. C., and Tassoulas, J. L. (1995), "Study of Pile Driving by Finite-element Method", Journal of Geotechnical Engineering, Vol.121, No.7, pp.535-543. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:7(535)
  14. Mabsout, M. E, Sadek, S. M., and Smayra, T. E. (1999), "Pile Driving by Numerical Cavity Expansion", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.23, No.11, pp.1121-1140. https://doi.org/10.1002/(SICI)1096-9853(199909)23:11<1121::AID-NAG28>3.0.CO;2-Y
  15. Paikowsky, S. G. (1989), "A Static Evaluation of Soil Plug behavior with Application to the Pile Plugging Problem", D.Sc. thesis, Massachusetts Institute of Technologym Cambridge, MA.
  16. Paikowsky, S. G. (1990), "The Mechanism of Pile Plugging in Sand", Proceedings of the 22nd Offshore Technology Conference, Houston, TX, pp.593-604.
  17. Qiu, G., Henke, S., and Grabe J. (2011), "Application of a Coupled Eulerian-Lagrangian Approach on Geomechanical Problems Involving Large Deformations", Computers and Geotechnics, Vol.38, pp.30-39. https://doi.org/10.1016/j.compgeo.2010.09.002
  18. Szechy, C. H. (1959), "Tests with Tubular Piles", Acta Technica, Hungarian Academy of Science, Vol.24, pp.181-219.
  19. Tho, K. K., Leung, C. F., Chow, K. K., and Swaddiwudhipong, S. (2012), "Eulerian Finite-Element Technique for Analysis of Jack-up Spudcan Penetration", International Journal of Geomechanics, Vol.12, No.1, pp.64-73. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000111
  20. Wang, D., Hu, Y., and Randolph, M. F. (2010), "Three-dimensional Large Deformation Finite-element Analysis of plate Anchors in Uniform Clay", Journal of Geotechnical and Geoenvironmental Engineering, Vol.136, No.2, pp.355-365. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000210
  21. White, D. J., Schneider, J. A., and Lehane, B. M. (2005), "The Influence of Effective Area Ratio on Shaft Friction of Displacement Piles in Sand", Proceedings of Frontier in255 Offshore Geotechnics, pp.741-747.

Cited by

  1. Large deformation finite element analyses in TBM tunnel excavation: CEL and auto-remeshing approach vol.116, pp.None, 2021, https://doi.org/10.1016/j.tust.2021.104081