• Title/Summary/Keyword: In-Bi soldering

Search Result 33, Processing Time 0.033 seconds

Lower Temperature Soldering of Capacitor Using Sn-Bi Coated $Sn-3.5\%Ag$ Solder (Sn-Bi도금 $Sn-3.5\%Ag$ 솔더를 이용한 Capacitor의 저온 솔더링)

  • Kim Mi-Jin;Cho Sun-Yun;Kim Sook-Hwan;Jung Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.61-67
    • /
    • 2005
  • Since lead (Pb)-free solders for electronics have higher melting points than that of eutectic Sn-Pb solder, they need higher soldering temperatures. In order to decrease the soldering temperature we tried to coat Sn-Bi layer on $Sn-3.5\%Ag$ solder by electroplating, which applies the mechanism of transient liquid phase bonding to soldering. During heating Bi will diffuse into the $Sn-3.5\%Ag$ solder and this results in decreasing soldering temperature. As bonding samples, the 1608 capacitor electroplated with Sn, and PCB, its surface was finished with electroless-plated Ni/Au, were selected. The $Sn-95.7\%Bi$ coated Sn-3.5Ag was supplied as a solder between the capacitor and PCB land. The samples were reflowed at $220^{\circ}C$, which was lower than that of normal reflow temperature, $240\~250^{\circ}C$, for the Pb-free. As experimental result, the joint of $Sn-95.7\%Bi$ coated Sn-3.5Ag showed high shear strength. In the as-reflowed state, the shear strength of the coated solder showed 58.8N, whereas those of commercial ones were 37.2N (Sn-37Pb), 31.4N (Sn-3Ag-0.5Cu), and 40.2N (Sn-8Zn-3Bi). After thermal shock of 1000 cycles between $-40^{\circ}C$ and $+125^{\circ}C$, shear strength of the coated solder showed 56.8N, whereas the previous commercial solders were in the range of 32.3N and 45.1N. As the microstructures, in the solder $Ag_3Sn$ intermetallic compound (IMC), and along the bonded interface $Ni_3Sn_4$ IMC were observed.

Interfacial Reaction Characteristics of a Bi-20Sb-10Cu-0.3Ni Pb-free Solder Alloy on Cu Pad (Bi-10Cu-20Sb-0.3Ni 고온용 무연 솔더와 Cu와의 계면 반응 특성)

  • Kim, Ju-Hyung;Hyun, Chang-Yong;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Interfacial reaction characteristics of a Bi-10Cu-20Sb-0.3Ni Pb-free alloy on Cu pad was investigated by reflow soldering at $430^{\circ}C$. The thickness of interfacial reaction layers with respect to the soldering time was also measured. After the reflow soldering, it was observed that a $(Cu,Ni)_2Sb$, a $Cu_4Sb$ intermetallic layer, and a haze layer, which is consisted of Bi and $Cu_4Sb$ phases, were successively formed at the Bi-10Cu-20Sb-0.3Ni/Cu interface. The total thickness of the reaction layers was found to be linearly increased with increasing of the reflow soldering time up to 120 s. As the added Ni element did not participate in the formation of the thickest $Cu_4Sb$ interfacial layer, suppression of the interfacial growth was not observed.

Fabrication and fault test of 12 kVA class BSCCO SFCL element (12 kVA급 BSCCO 한류소자 제작 및 특성 실험)

  • Oh, S.Y.;Yim, S.W.;Kim, H.R.;Hyun, O.B.;Jang, G.E.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.24-27
    • /
    • 2008
  • For the development of superconducting fault current limiters(SFCLs) having large current capacity, we fabricated an SFCL element that consists of Bi-2212 superconductor and Cu-Ni alloy tubes. First, Ag was plated on the surface of the Bi-2212 for the enhancement of soldering process. On the Ag-plated Bi-2212 tube, a Cu-Ni alloy tube was soldered using optimized solders and soldering conditions. The BSCCO/Cu-Ni composite was processed mechanically to have a helical shape for the improvement of the SFCL characteristics. The total current path of the SFCL element was 1330 mm long with 12 turns, and had critical current of 340 A at 77 K. Finally, we carried out the fault test using the fabricated SFCL element. It showed successful current limiting performance under the fault condition of 50 $V_{rms}$ and 5.5 kA. From the results, the rated voltage of the SFCL element was decided to be 0.4 V/cm, and the power capacity was 12 kVA at 77 K. The fabrication process of the SFCL and the fault test results will be presented.

A Study on the Soldering Characteristics of Sn-Ag-Bi-In Ball in BGA (Sn-Ag-Bi-In계 BGA볼의 솔더링 특성 연구)

  • 문준권;김문일;정재필
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.505-509
    • /
    • 2002
  • Pb is considered to be eliminated from solder, due to its toxicity. However, melting temperatures of most Pb-free solders are known higher than that of Sn37Pb. Therefore, there is a difficulty to apply Pb-free solders to electronic industry. Since Sn3Ag8Bi5In has relatively lower melting range as $188~200^{\circ}C$, on this study. Wettability and soldering characteristics of Sn3Ag8Bi5In solder in BGA were investigated to solve for what kind of problem. Zero cross time, wetting time, and equilibrium force of Sn3Ag8Bi5In solder for Cu and plated Cu such as Sn, Ni, and Au/Ni-plated on Cu were estimated. Plated Sn on Cu showed best wettability for zero cross time, wetting time and equilibrium farce. Shear strength of the reflowed joint with Sn3Ag8Bi5In ball in BGA was investigated. Diameter of the ball was 0.5mm, UBM(under bump metallurgy) was $Au(0.5\mu\textrm{m})Ni(5\mu\textrm{m})/Cu(18\mu\textrm{m})$ and flux was RMA type. For the reflow soldering, the peak reflow temperature was changed in the range of $220~250^{\circ}C$, and conveyor speed was 0.6m/min.. The shear strength of Sn3Ag8Bi5In ball showed similar level as those of Sn37Pb. The soldered balls are aged at $110^{\circ}C$ for 36days and their shear strengths were evaluated. The shear strength of Sn3Ag8Bi5In ball was increased from 480gf to 580gf by aging for 5 days.

A study on the Joining Properties of Bi-2212 High-Tc Superconducting Tube and Indium Solder (Bi-2212 고온초전도튜브와 인듐솔더의 접합특성연구)

  • Oh, S.Y.;Hyun, O.B.;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.179-183
    • /
    • 2006
  • As a material for SFCL(Superconducting Fault Current Limiter), BSCCO tube with metal stabilizer is a promising candidate, assuring the stability and large power capacity, For the application, the proper soldering technique, which overcome the difficulties of the joining between BSCCO and metal stabilizer, is required. In this study, after soldering In-Bi solder and In-Sn solder with BSCCO superconductor, welding properties between BSCCO and solders were investigated. Because ceramic materials is difficult to weld, Ag electro-plating on BSCCO 2212 is used for intermetallic layer. To find out the best welding condition for superconductor, soldering is tested in the maximum temperature from $155^{\circ}C\;to\;165^{\circ}C$ in the reflow oven. By investigating the composition and thickness of IMC (lntermetallic Compound) created in the reaction of Ag with solder, we analyzed the welding properties of High-Tc superconductor from a micro point of view.

  • PDF

Influence of Ag Precoating of $Bi_{2212}$ Superconductor-In Base Solder Soldering ($Bi_{2212}$ 초전도체와 In 계열 solder의 soldering에서 Ag precoating의 영향)

  • Jang Ji-Hoon;Kim Sang-Hyun;Shin Seung-Yong;Lee Yong-Chul;Kim Chan-Joong;Hyun Ok-Bae;Park Hae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.2
    • /
    • pp.57-63
    • /
    • 2006
  • In this study, In-base solder was applied to the interface between $Bi_2Sr_2Ca_1Cu_2O_x(Bi_{2212})$ superconductor and Cu-Ni shunt metal at the temperature lower than $150^{\circ}C$. Most of the cases, $Bi_{2212}$ superconductor was precoated with Ag by electroplating in order to improve the contact properties of the solder layer. When the superconductor was directly soldered on to the superconductor, the solder was easily separated without external force. The shear strength of the contact between superconductor and shunt metal increased from 69.2 kgf to 74.4 kgf and 80.1 kgf, as the current density of the Ag electroplating was changed from 63 mA to 96 mA and 126 mA, respectively. The contact strength also increased to 49.9 kgf and 69.2 kgf when thickness of the electroplated Ag layer increased to $5{\mu}m$ and $10{\mu}m$, reapectively.

A Study on Properties of Pb-free Solder Joints Combined Sn-Bi-Ag with Sn-Ag-Cu by Conditions of Reflow Soldering Processes (리플로우 솔더링 공정 조건에 따른 Sn-Bi-Ag와 Sn-Ag-Cu 복합 무연 솔더 접합부 특성 연구)

  • Kim, Jahyeon;Cheon, Gyeongyeong;Kim, Dongjin;Park, Young-Bae;Ko, Yong-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.55-61
    • /
    • 2022
  • In this study, properties of Pb-free solder joints which were combined using Sn-3.0Ag-0.5Cu (SAC305) Pb-free solder with a mid-temperature type of melting temperature and Sn-57Bi-1Ag Pb-free solder with a low-temperature type of melting temperature were reported. Combined Pb-free solder joints were formed by reflow soldering processes with ball grid array (BGA) packages which have SAC305 solder balls and flame retardant-4 (FR-4) printed circuit boards (PCBs) which printed Sn-57Bi-1Ag solder paste. The reflow soldering processes were performed with two types of temperature profiles and interfacial properties of combined Pb-free solder joints such as interfacial reactions, formations of intermetallic compounds (IMCs), diffusion mechanisms of Bi, and so on were analyzed with the reflow process conditions. In order to compare reliability characteristics of combined Pb-free solder joints, we also conducted thermal shock test and analyzed changes of mechanical properties for joints from a shear test during the thermal shock test.