• Title/Summary/Keyword: In vivo prediction

Search Result 68, Processing Time 0.027 seconds

Utility of Structural Information to Predict Drug Clearance from in Vitro Data

  • Lee, So-Young;Kim, Dong-Sup
    • Interdisciplinary Bio Central
    • /
    • v.2 no.2
    • /
    • pp.3.1-3.4
    • /
    • 2010
  • In the present research, we assessed the utility of the structural information of drugs for predicting human in vivo intrinsic clearance from in vitro intrinsic clearance data obtained by human hepatic microsome experiment. To compare with the observed intrinsic clearance, human intrinsic clearance values for 51 drugs were estimated by the classical methods using in vivo-in vitro scale-up and by the new methods using the in vitro experimental data and selected molecular descriptors of drugs by the forward selection technique together. The results showed that taking consideration of molecular descriptors into prediction from in vitro experimental data could improve the prediction accuracy. The in vitro experiment is very useful when the data can estimate in vivo data accurately since it can reduce the cost of drug development. Improvement of prediction accuracy in the present approach can enhance the utility of in vitro data.

Prediction equations for digestible and metabolizable energy concentrations in feed ingredients and diets for pigs based on chemical composition

  • Sung, Jung Yeol;Kim, Beob Gyun
    • Animal Bioscience
    • /
    • v.34 no.2
    • /
    • pp.306-311
    • /
    • 2021
  • Objective: The objectives were to develop prediction equations for digestible energy (DE) and metabolizable energy (ME) of feed ingredients and diets for pigs based on chemical composition and to evaluate the accuracy of the equations using in vivo data. Methods: A total of 734 data points from 81 experiments were employed to develop prediction equations for DE and ME in feed ingredients and diets. The CORR procedure of SAS was used to determine correlation coefficients between chemical components and energy concentrations and the REG procedure was used to generate prediction equations. Developed equations were tested for the accuracy according to the regression analysis using in vivo data. Results: The DE and ME in feed ingredients and diets were most negatively correlated with acid detergent fiber or neutral detergent fiber (NDF; r = -0.46 to r = -0.67; p<0.05). Three prediction equations for feed ingredients reflected in vivo data well as follows: DE = 728+0.76×gross energy (GE)-25.18×NDF (R2 = 0.64); ME = 965+0.66×GE-24.62×NDF (R2 = 0.60); ME = 1,133+0.65×GE-29.05×ash-23.17×NDF (R2 = 0.67). Conclusion: In conclusion, the equations suggested in the current study would predict energy concentration in feed ingredients and diets.

Evaluation of the Apparent Ileal Digestibility (AID) of Protein and Amino Acids in Nursery Diets by In vitro and In vivo Methods

  • Cho, J.H.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.7
    • /
    • pp.1007-1010
    • /
    • 2011
  • The objective was to evaluate in vitro prediction of ileal digestibility of protein and amino acids (AA) for current nursery pig diets (n = 10) by using pepsin and pancreatin incubations. To compare in vivo ileal digestibility, forty nursery pigs (4 pigs per diet) with an initial BW of $12.2{\pm}2.7$ kg were surgically equipped with T-cannula in the distal ileum. In all cases, the values of in vitro digestibility were higher than those of in vivo digestibility (p<0.05). With regard to the relationships of essential and non essential AA (CP), the $r^2$ value was 0.76. With regard to AA, high relationships were observed in Ile, Thr, and Gly (0.85, 0.83, and 0.89, respectively). Also, there was a lower relationship for Arg, Met, Ala, Asp, Glu, Pro, Ser, and Tyr with $R^2$ values of 0.56, 0.54, 0.40, 0.54, 0.45, 0.24, 0.49, and 0.35, respectively between in vitro and in vivo digestibility. The EAA relationship ($R^2$ = 0.71) was generally higher than that of NEAA ($R^2$ = 0.50) numerically. In conclusion, there were strong linear relationships between in vivo and in vitro ileal digestibility (CP, Ile, Thr, and Gly). In vitro prediction of ileal digestibility (CP, Ile, Thr, and Gly) seems to have significant potential for practical application.

A PREDICTION OF BODY WATER COMPARTMENTS OF GROWING CATTLE IN VIVO

  • Sekine, J.;Fujita, K.;Asahida, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 1992
  • Body water compartments in vivo were determined in Holstein cattle with age ranging from 5 to 521 days to obtain an equation to estimate volumes of body water. Live weight ranged from 47 to 480 kg. Compartments were determined as antipyrine space for total body water (TBW), thiocyanate space for extracellular water (ECW) and Evans blue dye space for plasma water (PW). Body water compartments expressed as a percentage of live weight decreased as age in days increased and significantly correlated with age in days. Regression analyses revealed that prediction equations had low accuracy. Regression equations of body water compartments on live weight (WT, kg) were useful for the prediction of body fluid with a high accuracy. Live weight significantly regressed on age in days (Day), which was inferred to be utilized for estimation of standardized live weight in case animals were emaciated by certain causes such as severe diarrhea or dehydration. In conclusion, following equations were presented to estimate body water compartments of cattle in vivo : TBW in liters = $0.556({\pm}0.007)WT+10$, r = 0.993, $SE{\pm}0.7$ ECW in liters = $0.321({\pm}0.008)WT+10$, r = 0.978, $SE{\pm}0.8$ PW in liters = $0.0502({\pm}0.0012)WT+1.6$, r = 0.0983, $SE{\pm}0.1$ WT (kg) = $0.772({\pm}0.018)Day+24$, r = 0.982, $SE{\pm}2.3$.

Prediction of apparent total tract digestion of crude protein in adult dogs

  • Kangmin Seo;Hyun-Woo Cho;Min Young Lee;Chan Ho Kim;Ki Hyun Kim;Ju Lan Chun
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.374-386
    • /
    • 2024
  • To predict the apparent total tract digestibility (ATTD) of crude protein (CP) in dogs we developed an in vitro system using an in vitro digestion method and a statistical analysis. The experimental diets used chicken meat powder as the protein source, with CP levels of 20% (22.01%, analyzed CP value as dry-based), 30% (31.35%, analyzed CP value as dry-based), and 40% (41.34%, analyzed CP value as dry-based). To simulate in vivo digestive processes a static in vitro digestion was performed in two steps; stomach and small intestine. To analyze ATTD the total fecal samples were collected in eight neutered beagle dogs during the experimental period. CP digestibility was calculated by measuring CP levels in dog food, in vitro undigested fraction, and dog feces. In result, CP digestibility at both in vivo and in vitro was increased with increasing dietary CP levels. To estimate in vivo digestibility the co-relation of in vivo ATTD and in vitro digestibility was investigated statistically and a regression equation was developed to predict the CP ATTD (% = 2.5405 × in vitro CP digestibility (%) + + 151.8). The regression equation was evaluated its feasibility by using a commercial diet. The predicted CP digestibility which was calculated by the regression equation showed high index of similarity (100.16%) with that of in vivo in dogs. With that, it would be a feasible non-animal method to predict in vivo CP digestibility by using in vitro digestion method and the proposed linear regression equation in adult dogs.

Prediction of the Exposure to 1763MHz Radiofrequency Radiation Based on Gene Expression Patterns

  • Lee, Min-Su;Huang, Tai-Qin;Seo, Jeong-Sun;Park, Woong-Yang
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.102-106
    • /
    • 2007
  • Radiofrequency (RF) radiation at the frequency of mobile phones has been not reported to induce cellular responses in in vitro and in vivo models. We exposed HEI-OC1, conditionally-immortalized mouse auditory cells, to RF radiation to characterize cellular responses to 1763 MHz RF radiation. While we could not detect any differences upon RF exposure, whole-genome expression profiling might provide the most sensitive method to find the molecular responses to RF radiation. HEI-OC1 cells were exposed to 1763 MHz RF radiation at an average specific absorption rate (SAR) of 20 W/kg for 24 hr and harvested after 5 hr of recovery (R5), alongside sham-exposed samples (S5). From the whole-genome profiles of mouse neurons, we selected 9 differentially-expressed genes between the S5 and R5 groups using information gain-based recursive feature elimination procedure. Based on support vector machine (SVM), we designed a prediction model using the 9 genes to discriminate the two groups. Our prediction model could predict the target class without any error. From these results, we developed a prediction model using biomarkers to determine the RF radiation exposure in mouse auditory cells with perfect accuracy, which may need validation in in vivo RF-exposure models.

Improvement of in vitro Sun Protection Factor Measurement (In vitro SPF 측정법 개선에 관한 연구)

  • 안성연;배지현;이해광;문성준;장이섭
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.129-133
    • /
    • 2004
  • The major advantage of the in vitro test is that it is a rapid, objective and cost-effective screening methodology. In vitro tests can provide a formulation tool to identify new fillers that are optimized by combinations of old ones and they can be used to pre-screen protective formulas prior to in vivo testing in humans. Therefore, the accuracy of in vitro SPF measurement is very important. In this study, improvement of application method of samples was tried to improve the accuracy of in vitro SPF measurement. The outer part of Transpore$\^$(R)/ tape was used to apply samples as the substrates and the standard drying time was set at 15 min. The new method, topical applications at light scan areas, results in more accurate and reliable results. This result suggests that more accurate prediction system can be established for in vivo SPF with in vivo SPF measurement.

Comparing In Vitro and In Vivo Genomic Profiles Specific to Liver Toxicity Induced by Thioacetamide

  • Kang, Jin-Seok;Jeong, Youn-Kyoung;Shin, Ji-He;Suh, Soo-Kyung;Kim, Joo-Hwan;Lee, Eun-Mi;Kim, Seung-Hee;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • v.15 no.4
    • /
    • pp.252-260
    • /
    • 2007
  • As it is needed to assay possible feasibility of extrapolation between in vivo and in vitro systems and to develop a new in vitro method for toxicity testing, we investigated global gene expression from both animal and cell line treated with thioacetamide (TAA) and compared between in vivo and in vitro genomic profiles. For in vivo study, mice were orally treated with TAA and sacrificed at 6 and 24 h. For in vitro study, TAA was administered to a mouse hepatic cell line, BNL CL.2 and sampling was carried out at 6 and 24 h. Hepatotoxicity was assessed by analyzing hepatic enzymes and histopathological examination (in vivo) or lactate dehydrogenase (LDH) assay and morphological examination (in vitro). Global gene expression was assessed using microarray. In high dose TAA-treated group, there was centrilobular necrosis (in vivo) and cellular toxicity with an elevation of LDH (in vitro) at 24 h. Statistical analysis of global gene expression identified that there were similar numbers of altered genes found between in vivo and in vitro at each time points. Pathway analysis identified several common pathways existed between in vivo and in vitro system such as glutathione metabolism, bile acid biosynthesis, nitrogen metabolism, butanoate metabolism for hepatotoxicty caused by TAA. Our results suggest it may be feasible to develop toxicogenomics biomarkers by comparing in vivo and in vitro genomic profiles specific to TAA for application to prediction of liver toxicity.

MicroRNA-Gene Association Prediction Method using Deep Learning Models

  • Seung-Won Yoon;In-Woo Hwang;Kyu-Chul Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.294-299
    • /
    • 2023
  • Micro ribonucleic acids (miRNAs) can regulate the protein expression levels of genes in the human body and have recently been reported to be closely related to the cause of disease. Determining the genes related to miRNAs will aid in understanding the mechanisms underlying complex miRNAs. However, the identification of miRNA-related genes through wet experiments (in vivo, traditional methods are time- and cost-consuming). To overcome these problems, recent studies have investigated the prediction of miRNA relevance using deep learning models. This study presents a method for predicting the relationships between miRNAs and genes. First, we reconstruct a negative dataset using the proposed method. We then extracted the feature using an autoencoder, after which the feature vector was concatenated with the original data. Thereafter, the concatenated data were used to train a long short-term memory model. Our model exhibited an area under the curve of 0.9609, outperforming previously reported models trained using the same dataset.