• Title/Summary/Keyword: In vivo imaging system

Search Result 100, Processing Time 0.038 seconds

Study of Lipid Coated Polymeric Nanoparticles for Lung Metastasis (폐 전이 암에 대한 Lipid Coated Polymeric Nanoparticles에 관한 연구)

  • Park, Junyoung;Park, Sanghyo;Jo, Yerim;Jeong, Minji;Kim, Inwoo;Kang, Wonjun;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.147-152
    • /
    • 2018
  • Lung cancer and pulmonary metastasis are the leading cause of cancer mortality worldwide. Survival for patients with lung metastases is about 5%. Nanoparticles have been developed for the imaging and treatment of various cancers, including pulmonary malignancies. In this work, we report lipid coated polymeric nanoparticles (LPNs) with an average diameter of 154 nm. In vivo performance of LPNs was characterized using optical imaging system. We expect this nanoparticle can be used for finding lung cancer or lung metastasis. Eventually loading therapeutic drug with the nanoparticle will be utilized for cancer diagnosis and effective therapy at the same time.

Conductivity Imaging of a Canine Head using a 3T MREIT System with a Carbon-Hydrogel Electrode: Postmortem Experiment (3T MREIT 시스템을 이용한 실험견 사체의 두부 도전율 영상)

  • Jeong, Woo-Chul;Kim, Young-Tae;Minhas, Atul S.;Kim, Hyung-Joong;Lee, Tae-Hwi;Kang, Byeong-Teck;Park, Hee-Myung;Woo, Eung-Je
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.2
    • /
    • pp.179-184
    • /
    • 2009
  • Magnetic Resonance Electrical Impedance Tomography (MREIT) is a new bio-imaging modality providing cross-sectional conductivity images from measurements of internal magnetic flux densities produced by externally injected currents. Recent MREIT studies demonstrated successful conductivity image reconstructions of postmortem and in vivo canine brain. However, the whole head imaging was not achieved due to technical issues related with electrodes and noise in measured magnetic flux density data. In this study, we used a new carbon-hydrogel electrode with a large contact area and injected 30 mA imaging current through a canine head. Using a 3T MREIT system, we performed a postmortem canine experiment and produced high-resolution conductivity images of the entire canine head. Collecting magnetic flux density data inside the head subject to multiple injection currents, we reconstructed cross-sectional conductivity images using the harmonic $B_z$ algorithm. The conductivity images of the canine head show a good contrast not only inside the brain region including white and gray matter but also outside the brain region including the skull, temporalis muscle, mandible, lingualis proprius muscle, and masseter muscle.

Frequency-domain Diffuse Optical Tomography System Adopting Lock-in Amplifier (Lock-in 증폭기를 채용한 주파수영역 확산 광단층촬영 시스템)

  • Jun, Young-Sik;Baek, Woon-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.3
    • /
    • pp.134-140
    • /
    • 2011
  • In this paper, we developed a frequency-domain diffuse optical tomography(DOT) system for non-invasively imaging in vivo. The system uses near-infrared(NIR) light sources and detectors for which the photon propagation in human tissue is dominated by scattering rather than by absorption. We present the experimental reconstruction images of absorption and scattering coefficients using a liquid tissue phantom, and we obtain the location and shape of an anomaly which has different optical properties than the phantom.

Higher Order Shimming for Ultra-fast Spiral-Scan Imaging at 3 Tesla MRI System (3 Tesla MRI 시스템에서 초고속 나선주사영상을 위한 고차 shimming)

  • Kim, P.K.;Lim, J.W.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.2
    • /
    • pp.95-102
    • /
    • 2007
  • Purpose: To acquire high-resolution spiral-scan images at higher magnetic field, high homogeneous magnetic field is needed. Field inhomogeneity mapping and in-vivo shimming are important for rapid imaging such as spiral-scan imaging. The rapid scanning sequences are very susceptible to inhomogeneity. In this paper, we proposed a higher-order shimming method to obtain homogeneous magnetic field. Materials and Methods: To reduce measurement time for field inhomogeneity mapping, simultaneous axial/ sagittal, and coronal acquisitions are done using multi-slice based Fast Spin echo sequence. Acquired field inhomogeneity map is analyzed using the spherical harmonic functions, and shim currents are obtained by the multiplication of the pseudo-inverse of the field pattern with the inhomogeneity map. Results: Since the field inhomogeneity is increasing in proportion to the magnetic field, higher order shimming to reduce the inhomogeneity becomes more important in high field imaging. The shimming technique in which axial, sagittal, and coronal section inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the imhomogenity map is applied. The proposed technique is applicable to a localized shimming as well. High resolution spiral-scan imaging was successfully obtained with the proposed higher order shimming. Conclusion: Proposed pulse sequence for rapid measurement of inhomogeneity map and higher order shimming based on the inhomogeneity map work very well at 3 Tesla MRI system. With the proposed higher order shimming and localized higher order shimming techniques, high resolution spiral-scan images are successfully obtained at 3 T MRI system.

  • PDF

Volumetric Blood Velocity Measurement on Multigate Pulsed Doppler System based on the Single Channel RF Sampling using the Optimized Sampling Factor (최적화된 샘플링 인수를 갖는 단일 채널 RF 샘플링 방식의 다중점 펄스 도플러 시스템을 사용한 혈류 속도분포 측정)

  • 임춘성;민경선
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.143-152
    • /
    • 1998
  • In this paper, we present the performances of a Doppler system using single channel RF(Radio Frequency) sampling. This technique consists of undersampling the ultrasonic blood backscattered RF signal on a single channel. Conventional undersampling method in Doppler imaging system have to use a minimum of two identical parallel demodulation channels to reconstruct the multigate analytic Doppler signal. However, this system suffers from hardware complexity and problem of unbalance(gain and phase) between the channels. In order to reduce these problems, we have realized a multigate pulsed Doppler system using undersampling on a single channel, It requires sampling frequency at $4f_o$(where $f_o$ is the center frequency of the transducer) and 12bits A/D converter. The proposed " single-Channel RF Sampling" method aims to decrease the required sampling frequency proportionally to $4f_o$/(2k+1). To show the influence of the factor k on the measurements, we have compared the velocity profiles obtained in vitro and in vivo for different intersequence delays time (k=0 to 10). We have used a 4MHz center frequency transducer and a Phantom Doppler system with a laminar stationary flow. The axial and volumetric velocity profiles in the vessel have been computed according to factor k and have been compared. The influence of the angle between the ultrasonic beam and the flow axis direction, and the fluid viscosity on the velocity profiles obtained for different values of k factor is presented. For experiment in vivo on the carotid, we have used a data acquisition system with a sampling frequency of 20MHz and a dynamic range of 12bits. We have compared the axial velocity profiles in systole and diastole phase obtained for single channel RF sampling factor.ng factor.

  • PDF

Micro-CT System for Small Animal Imaging (소동물영상을 위한 마이크로 컴퓨터단층촬영장치)

  • Nam, Ki-Yong;Kim, Kyong-Woo;Kim, Jae-Hee;Son, Hyun-Hwa;Ryu, Jeong-Hyun;Kang, Seoung-Hoon;Chon, Kwon-Su;Park, Seong-Hoon;Yoon, Kwon-Ha
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.102-112
    • /
    • 2008
  • We developed a high-resolution micro-CT system based on rotational gantry and flat-panel detector for live mouse imaging. This system is composed primarily of an x-ray source with micro-focal spot size, a CMOS (complementary metal oxide semiconductor) flat panel detector coupled with Csl (TI) (thallium-doped cesium iodide) scintillator, a linearly moving couch, a rotational gantry coupled with positioning encoder, and a parallel processing system for image data. This system was designed to be of the gantry-rotation type which has several advantages in obtaining CT images of live mice, namely, the relative ease of minimizing the motion artifact of the mice and the capability of administering respiratory anesthesia during scanning. We evaluated the spatial resolution, image contrast, and uniformity of the CT system using CT phantoms. As the results, the spatial resolution of the system was approximately the 11.3 cycles/mm at 10% of the MTF curve, and the radiation dose to the mice was 81.5 mGy. The minimal resolving contrast was found to be less than 46 CT numbers on low-contrast phantom imaging test. We found that the image non-uniformity was approximately 70 CT numbers at a voxel size of ${\sim}55{\times}55{\times}X100\;{\mu}^3$. We present the image test results of the skull and lung, and body of the live mice.

  • PDF

Neural circuit remodeling and structural plasticity in the cortex during chronic pain

  • Kim, Woojin;Kim, Sun Kwang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Damage in the periphery or spinal cord induces maladaptive plastic changes along the somatosensory nervous system from the periphery to the cortex, often leading to chronic pain. Although the role of neural circuit remodeling and structural synaptic plasticity in the 'pain matrix' cortices in chronic pain has been thought as a secondary epiphenomenon to altered nociceptive signaling in the spinal cord, progress in whole brain imaging studies on human patients and animal models has suggested a possibility that plastic changes in cortical neural circuits may actively contribute to chronic pain symptoms. Furthermore, recent development in two-photon microscopy and fluorescence labeling techniques have enabled us to longitudinally trace the structural and functional changes in local circuits, single neurons and even individual synapses in the brain of living animals. These technical advances has started to reveal that cortical structural remodeling following tissue or nerve damage could rapidly occur within days, which are temporally correlated with functional plasticity of cortical circuits as well as the development and maintenance of chronic pain behavior, thereby modifying the previous concept that it takes much longer periods (e.g. months or years). In this review, we discuss the relation of neural circuit plasticity in the 'pain matrix' cortices, such as the anterior cingulate cortex, prefrontal cortex and primary somatosensory cortex, with chronic pain. We also introduce how to apply long-term in vivo two-photon imaging approaches for the study of pathophysiological mechanisms of chronic pain.

Comparisons of functional brain mappings in sensory and affective aspects following taste stimulation (미각자극에 따른 감각 및 감성적 미각정보 처리과정의 기능적 매핑 비교)

  • Lee, Kyung Hee
    • Science of Emotion and Sensibility
    • /
    • v.15 no.4
    • /
    • pp.585-592
    • /
    • 2012
  • Food is crucial for the nutrition and survival of humans. Taste system is one of the fundamental senses. Taste cells detect and respond to five basic taste modalities (sweet, bitter, salty, sour, and umami). However, the cortical processing of taste sensation is much less understood. Recently, there were many efforts to observe the brain activation in response to taste stimulation using functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and optical imaging. These different techniques do not provide directly comparable data each other, but the complementary investigations with those techniques allowed the description and understanding of the sequence of events with the dynamics of the spatiotemporal pattern of activation in the brain in response to taste stimulation. The purpose of this study is the understanding of the brain activities to taste stimuli in sensory and affective aspects and the reviewing of the recent research of the gustotopic map by functional brain mapping.

  • PDF

Development of Signal Processing Modules for Double-sided Silicon Strip Detector of Gamma Vertex Imaging for Proton Beam Dose Verification (양성자 빔 선량 분포 검증을 위한 감마 꼭지점 영상 장치의 양면 실리콘 스트립 검출기 신호처리 모듈 개발)

  • Lee, Han Rim;Park, Jong Hoon;Kim, Jae Hyeon;Jung, Won Gyun;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Recently, a new imaging method, gamma vertex imaging (GVI), was proposed for the verification of in-vivo proton dose distribution. In GVI, the vertices of prompt gammas generated by proton induced nuclear interaction were determined by tracking the Compton-recoiled electrons. The GVI system is composed of a beryllium electron converter for converting gamma to electron, two double-sided silicon strip detectors (DSSDs) for the electron tracking, and a scintillation detector for the energy determination of the electron. In the present study, the modules of a charge sensitive preamplifier (CSP) and a shaping amplifier for the analog signal processing of DSSD were developed and the performances were evaluated by comparing the energy resolutions with those of the commercial products. Based on the results, it was confirmed that the energy resolution of the developed CSP module was a little lower than that of the CR-113 (Cremat, Inc., MA), and the resolution of the shaping amplifier was similar to that of the CR-200 (Cremat, Inc., MA). The value of $V_{rms}$ representing the magnitude of noise of the developed system was estimated as 6.48 keV and it was confirmed that the trajectory of the electron can be measured by the developed system considering the minimum energy deposition ( > ~51 keV) of Compton-recoiled electron in 145-${\mu}m$-thick DSSD.

Effects of NEX on SNR and Artifacts in Parallel MR Images Acquired using Reference Scan

  • Heo, Yeong-Cheol;Lee, Hae-Kag;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.422-427
    • /
    • 2013
  • The aim of this study was to investigate effects of the number of acquisitions (NEX) on signal-to-noise (SNR) and artifacts in SENSE parallel imaging of magnetic resonance imaging (MRI). 3.0T MR System, 8 Channel sensitivity encoding (SENSE) head coils were used along with an in-vivo phantom. Reference sequence of 3D fast field echo (FFE) was consisted of NEX values of 2, 4, 6, 8, 10 and 12. The T2 turbo spin echo (TSE) sequence used for exams achieved SENSE factors of 1.2, 1.5, 1.8, 2.0, 2.2, 2.5, 2.8, 3.0, 3.2, 3.5, 3.8 and 4.0. Exams were conducted five times for each SENSE factor to measure signal intensity of the object, the posterior phase-encode direction and frequency direction. And SNR was calculated using mean values. SENSE artifacts were identified as background signal intensity in the phase-encoded direction using MRIcro. It was found that SNR increased but SENSE artifacts reduced with NEX of 4, 8 and 12 when the NEX increased in reference scan. It is therefore concluded that image quality can be improved with NEX of 4, 8 and 12 for reference scanning.