• Title/Summary/Keyword: In vivo Fermentation

Search Result 163, Processing Time 0.029 seconds

A Review of the Health Benefits of Kimchi Functional Compounds and Metabolites

  • Hyun Ju Kim;Min Sung Kwon;Hyelyeon Hwang;Ha-Sun Choi;WooJe Lee;Sang-Pil Choi;Haeun Jo;Sung Wook Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.353-373
    • /
    • 2023
  • Kimchi is a traditional Korean dish made with salted fermented vegetables and contains various nutrients and functional substances with potential health benefits. The fermentation process used to make kimchi creates chemical changes in the food, developing nutrients and functional substances that are more easily absorbed and enhanced by the body. Recent studies have shown that several lactic acid bacteria strains isolated from kimchi exhibit probiotic properties and have several health benefiting properties such as such as anticancer, anti-obesity, and anti-constipation; they also promote colon health and cholesterol reduction in in vitro and in vivo experiments, as well as in epidemiological cohort studies. Kimchi contains prebiotics, non-digestible fibers that nourish beneficial gut bacteria; therefore, its intake effectively provides both probiotics and prebiotics for improved gut health and a fortified gut-derived immune system. Furthermore, fermentation of kimchi produces a variety of metabolites that enhance its functionality. These metabolites include organic acids, enzymes, vitamins, bioactive compounds, bacteriocins, exopolysaccharides, and γ-aminobutyric acid. These diverse health-promoting metabolites are not readily obtainable from single food sources, positioning kimchi as a valuable dietary option for acquiring these essential components. In this review, the health functionalities of kimchi ingredients, lactic acid bacteria strains, and health-promoting metabolites from kimchi are discussed for their properties and roles in kimchi fermentation. In conclusion, consuming kimchi can be beneficial for health. We highlight the benefits of kimchi consumption and establish a rationale for including kimchi in a balanced, healthy diet.

Quality and Probiotic Lactic Acid Bacteria Diversity of Rabbit Meat Bekasam-Fermented Meat

  • Wulandari, Eka;Yurmiati, Husmy;Subroto, Toto;Suradi, Kusmajadi
    • Food Science of Animal Resources
    • /
    • v.40 no.3
    • /
    • pp.362-376
    • /
    • 2020
  • Rabbit meat bekasam is a traditional fermentation product from Indonesia. This study aimed to determine the chemical and microbiological characteristics of rabbit meat bekasam during the fermentation process in order to isolate, characterize (in vitro and in vivo), and identify lactic acid bacteria (LAB) as the probiotic candidate. The chemical contents of bekasam on 7-day fermentation were investigated in explorative and experimental methods in a completely randomized design. A proximate analysis reported a decrease in the moisture content, fat and carbohydrate content, and an increase in protein content. Also, lactic acid content was increased from 0.48% to 1.12%, and pH was decreased from 5.3 to 4.3. Other properties indicated different values, such as bacteria (2.75×106 to 4.45×107 CFU/g), total LAB (3.82×106 to 4.67×108 CFU/g), total yeast (9.89×106 to 3.82×108 CFU/g) and total mould (4.34×101 to 4.86×103 CFU/g). The experiment produced nine LAB isolates, including two probiotics subjected to further 16S rRNA gene analysis, which indicated that Lactobacillus buchneri was the potential probiotic isolate. After being tested on BALB/c mice, L. buchneri could improve the immune system by inhibiting the growth of Coliform and Salmonella.

Immunostimulatory Effects of Blueberry Yeast Fermented Powder Against Cyclophosphamide-induced Immunosuppressed Model (Cyclophosphamide에 의한 면역저하 동물모델에서 블루베리 효모 발효 분말의 면역증강 효과)

  • Jeong, Do Youn;Yang, Hee Jong;Jeong, Su Ji;Kim, Min Guk;Yun, Chi Young;Lee, Hak Yong;Lee, Yang Hee;Shin, Dong Yeop;Yang, Yea gin;Lee, Hae Seong;Park, Young Mi
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.1
    • /
    • pp.48-55
    • /
    • 2019
  • Current studies have been reported that fruits such as berries may contain both antioxidant and antitumor polyphenols that may be important in this regard. We investigated the immunostimulatory effect of fermented blueberry (Vaccinium corymbosum L.) on cyclophosphamide-induced immunosuppression in animal model. Rats were administered blueberry yeast fermented powder (BYFP) at doses 30, 100, and 300 mg/kg for 4 weeks after cyclophosphamide (Cy) treatment, respectively. The immunomodulatory effect of BYFP were measured both in vitro and in vivo, and the changes of blood components were also analyzed. We found that BYFP recovered immunosuppression-mediated decreased liver, spleen, and thymus weights as well as up regulation of white blood cell, lymphocyte, and neutrophil in blood. Moreover, BYFP up-regulated IL-2, TNF-${\alpha}$, and IFN-${\gamma}$ pro-inflammatory cytokine production compared to immune suppressed control group, respectively. According to histological studies, BYFP regenerated significantly on Cy-mediated injured spleen at the high doses (BYFP 300) comparison with Cy-treated groups (immunosuppression). Collectively, these findings suggest that BYFP may have the potential as a dietary immunostimulatory agent.

Evaluation of nutritive value of chestnut hull for ruminant animals using in vitro rumen fermentation (밤 가공 부산물의 반추가축용 사료 가치 평가: in vitro 반추위 배양)

  • Jeong, Sin-Yong;Jo, Hyeon-Seon;Park, Gi-Su;Kang, Gil-Nam;Jo, Nam-Chul;Seo, Seongwon
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.3
    • /
    • pp.335-340
    • /
    • 2012
  • During the manufacturing process of chestnut, 50% of biomass is produced as chestnut shell (CS) or chestnut hull (CH), a forestry by-product. Due to its high fiber content and economic benefit, there is a possibility of using chestnut hull as a supplement for a ruminant diet. Few studies, however, have been conducted on evaluating nutritive value of chestnut hull for ruminant animals. The objective of this study were thus to analyze chemical composition of CS, a by-product after the first processing of chestnut, and CH, a by-product after the second processing, and access in vitro rumen fermentation characteristics of them. For the in vitro fermentation using strained rumen fluid obtained from a fistulated Hanwoo steer, commercial total mixed ration (TMR) for dairy goat was used as a basal diet and was replaced with different proportions of chestnut shell and hull. A total number of 13 treatments were carried out in this study: 100% TMR, 100% CS, 100% CH, a mix with 50% CS and 50% of CH (MIX), TMR replaced with 5%, 10%, or 15% of CS, CH, or MIX, respectively. For each treatment, in vitro dry matter digestibility (IVDMD) and pH after 48 hours of rumen fermentation were measured. Gas production at 6, 12, 24, 48 hours of incubation was also analyzed. Compared to CH, CS contains higher level of fiber (NDF, ADF, lignin) and consequently has a lower amount of non-fiber carbohydrate, but no difference was observed in the other nutrients (i.e. crude protein, crude fat, and ash). IVDMD was significantly (p<0.05) the highest in 100% CH (71.97%) and the lowest in 100% CS (42.80%). Addition of CH by replacing TMR did not affect IVDMD, while an increase in the proportion of CS tended to decrease IVDMD. The total gas production after 48 hours of incubation and the rate of gas production were also the highest in 100% CH and the lowest in 100% CS (P<0.05). Likewise, the pH after 48 hours of fermentation was significantly (p<0.05) the lowest in 100% CH (6.33) and the highest in 100% CS (6.50), and no significant difference in gas production was observed when TMR was replaced with CS or CH up to 15% (P>0.05). In conclusion, CH may successfully be used for a supplement in a ruminant diet. The nutritive value of CS is relative low, but can replace, if not 100%, low quality forage. This study provides valuable information about the nutritive value of CS and CH. An in vivo trials, however, is needed for conclusively accessing the nutritive value of CS and CH.

Effect of Immune Function on the fermentation of Kimchi Intake to append Acanthopanacis cortex Extract in Balb/c Mice (오가피(五加皮) (Acanthopanacis cortex)추출물(抽出物)을 첨가한 발효김치의 급여가 생쥐의 면역작용(免疫作用)에 미치는 영향(影響))

  • Lim, Jong-Soon
    • Journal of Haehwa Medicine
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • This experimental study was carried out to evaluate the effects of Kimchi intake of Acanthopanacis cortex extract (APCE) supplementation on cytokine-induction and immune response in mice. To study in experiments using male Balb/c mice fed Kimchi and Kimchi of APCE supplementation (addition of 2% of total Kimchi weight) containing fed experimental diet during 2 weeks. Experimental mice were fed control diet or diet containing freeze-dried Kimchi at the level of 5%(w/w) or 5% freeze-dried Kimchi with 2% APCE supplementation. The main ingredient of Kimchi was Korean cabbage and fermentation was carried out at $4^{\circ}C$ for three weeks. Freeze-dried 2% APCE supplementation was added to Kimchi at the begining of fermentation. In order to investigate the effect of Kimchi intake of APCE supplementation (5%Kimchi-2%APCE), the following was performed; body weight, food intake, hematological parameter, serum level of mouse interleukin-4 (mlL-4) and mouse interferon-$\gamma$ (mIFN-$\gamma$ ), and, the percentage of CD3+/CD4+, CD3+/CD8+, B220+ in splenic cells. The results of final body weight, and food diet intake of two Kimchi groups were lower than those of the control group (not supplemented experimental diet). The hematology change obtained from the level of WBC (white blood cell) and platelet were not affected by feeding different dietary regiments, but the level of RBC (red blood cells) HB (hemoglobin), and spleen weight of two Kimchi groups were increased significantly than those of the control group. The serum level of IL-4 and IFN-$\gamma$ of two Kimchi groups were increased significantly than those of the control group, also enhanced the percentages of the CD3+/CD4+ and CD3+/CD8+ by 5% freeze-dried Kimchi, and 5%Kimchi-2%APCE group were 43.9 and 65.2%, and 96.0 and 208% than those of the control group, respectively. From these results, it can be concluded that Kimchi itself has an immuno-stimulatory effect and Kimchi contaning 2% APCE supplementation has the more pronounced effect in vivo system.

  • PDF

Effects of Supplementation of Fat Sources, Ca and Mg on In Vitro Fermentation and the Performance of Finishing Hanwoo Bulls (지방의 공급형태와 Ca 및 Mg의 첨가가 In Vitro 발효 및 비육후기 한우의 성장성적에 미치는 영향)

  • Lee, H.G.;Lee, D.H.;Choi, N.J.;Lee, S.R.;Choi, Y.J.;Maeng, W.J.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.613-624
    • /
    • 2004
  • This study was aimed at investigating the effect of fat supplementation with divalent ions such as MgO and $CaCl_2$ on 1) in vitro ruminal fermentation characteristics and insoluble fatty acid formation, and on 2) animal performance in finishing Hanwoo bulls. In in vitro trial, five different types of diets based on supplementation sources of fat and divalent ions, i.e. T=basal diet+4% tallow, T-Ca=T+0.5% $CaCl_2$, T-Mg=TA+0.5% MgO, T-MgCa = T +0.5% $CaCl_2$+0.5% MgO, T-caS =4% Ca salt tallow, were tested. Higher pH values were observed at 6 hr incubation(P<0.01) while higher amount of VFA were produced in diets 4 and 5 at 12 hr incubation(P<0.05). Nutrients(DM, OM, Crude protein and NDF) degradation tended to increase in divalent ions or Ca-salts treated tallow treatments compared with tallow treatment after 12 h. The amount of insoluble fatty acid increased by adding MgO or $CaCl_2$ to tallow or Ca soap tallow during incubation(P<0.05). In in vivo trial, thirty finishing Hanwoo(average BW 460kg) were divided into three groups based on fat sources and divalent ions, i.e. Control(EE 2.40), T-MgCa = control + tallow + $CaCl_2$ + MgO, T-CaS = control + Ca soap tallow (EE 5.30%). After feeding each diet for 80 days, average daily weight gain showed 0.89, 1.02, 1.17kg in diets 1, 2 and 3, respectively. The highest feed efficiency was observed(0.12) in diet 2 group, followed by diet 3 (0.10) and 1 groups(0.08; P < 0.05). In conclusion, the present results could be sununarized that the performance of Hanwoo bulls was improved by tallow with divalent ions without any negative effect on rumen fermentation.

Effects of Passtein® Supplements on Protein Degradability, Ruminal Fermentation and Nutrient Digestibility (패스틴®첨가가 단백질 분해율과 반추위 발효 및 영양소 소화율에 미치는 영향)

  • Choi, Y.J.;Choi, N.J.;Park, S.H.;Song, J.Y.;Um, J.S.;Ko, J.Y.;Ha, J.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.549-560
    • /
    • 2002
  • This study, including two in vitro experiments and an in vivo experiment were conducted to evaluate effects of Passtein$^{(R)}$ on crude protein degradability, ruminal fermentation characteristics and nutrient digestibility. In in vitro experiment protein degradability was examined using borate-phosphate buffer and neutral detergent, and using protease from Stroptomyces griseus at 39$^{\circ}C$ for 0, 2, 4, 8, 12, and 48 h. In addition, an in vivo experiment was conducted in a switch back design and ruminal fermentation and nutrient digestibility were determined. Four ruminal-fistulated Holstein cows weighing 300kg in mean body weight randomly allotted to 2 treatments (control and Passtein$^{(R)}$ supplementation). Although there was no significant difference on protein fraction between treatments, it appears that Passtein$^{(R)}$ supplementation decreased buffer soluble protein fraction compared to control. Protein degradability was not affected by Passtein$^{(R)}$ from 0 h to 4 h, but decreased at 12 h and 48 h compared to control. Degradation of immediately degradable fraction was higher in Passtein$^{(R)}$ treatment, but degradation of fermentable fraction was lower in Passtein$^{(R)}$ treatment compared to control. The pH and $NH_3$-N concentration tended to increase in Passtein$^{(R)}$ treatment, but VFA production, microbial counts and enzyme activity tended to decrease in Passtein$^{(R)}$ treatment compared to control. In addition, nutrient digestibility in the total tract tended to increase in Passtein$^{(R)}$ treatment compared to control.

Screening for Antifungal Endophytic Fungi Against Six Plant Pathogenic Fungi

  • Park, Joong-Hyeop;Park, Ji-Hyun;Choi, Gyung-Ja;Lee, Seon-Woo;Jang, Kyoung-Soo;Choi, Yong-Ho;Cho, Kwang-Yun;Kim, Jin-Cheol
    • Mycobiology
    • /
    • v.31 no.3
    • /
    • pp.179-182
    • /
    • 2003
  • A total of 187 endophytic fungi were isolated from 11 plant species, which were collected from 11 locations in Korea. Their antifungal activities were screened in vivo by antifungal bioassays after they were cultured in potato dextrose broth and rice solid media. Antifungal activity against plant pathogenic fungi such as Magnaporthe grisea(rice blast), Corticium sasaki(rice sheath blight), Botrytis cinerea(tomato gray mold), Phytophthora infestans(tomato late blight), Puccinia recondita(wheat leaf rust), and Blumeria graminis f. sp. hordei(barley powdery mildew) was determined in vivo by observing the inhibition of plant disease development. Twenty(11.7%) endophytic fungi fermentation broths were able to control, by more than 90%, at least one of the six plant diseases tested. Among 187 liquid broths, the F0010 strain isolated from Abies holophylla had the most potent disease control activity; it showed control values of more than 90% against five plant diseases, except for tomato late blight. On the other hand, fourteen(7.5%) solid culture extracts exhibited potent disease control values of more than 90% against one of six plant diseases. The screening results of this study strongly suggested that metabolites of plant endophytic fungi could be good potential sources for screening programs of bioactive natural products.

Replacement of corn with rice grains did not alter growth performance and rumen fermentation in growing Hanwoo steers

  • Yang, Sungjae;Kim, Byeongwoo;Kim, Hanbeen;Moon, Joonbeom;Yoo, Daekyum;Baek, Youl-Chang;Lee, Seyoung;Seo, Jakyeom
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.230-235
    • /
    • 2020
  • Objective: This study was realized to evaluate the nutritional value of rice grains as a replacement for corn grains in the diet of growing Hanwoo steers. Methods: Two experimental diets were prepared: i) Corn total mixed ration (TMR) consisting of 20% corn grains and ii) Rice TMR consisting of 20% rice grains, in a dry matter (DM) basis. These treatments were used for in vitro rumen fermentation and in vivo growth trials. In the rumen fermentation experiment, the in vitro DM digestibility (IVDMD), in vitro crude protein digestibility (IVCPD), in vitro neutral detergent fiber digestibility, pH, ammonia nitrogen, and volatile fatty acids (VFA) were estimated at 48 h, and the gas production was measured at 3, 6, 12, 24, and 48 h. Twenty four growing Hanwoo steers (9 months old; body weight [BW]: 259±13 kg) were randomly divided into two treatment groups and the BW, dry matter intake (DMI), average daily gain (ADG), and feed conversion ratio (FCR) were measured. Results: The in vitro experiment showed that the IVDMD, IVCPD, and VFA production of the Rice TMR were higher than those of the Corn TMR (p<0.05). The growth trial showed no differences (p>0.05) in the final BW, ADG, DMI, and FCR between the two TMRs. Conclusion: The use of rice grains instead of corn grains did not exhibit any negative effects on the rumen fermentation or growth performance, thereby rice grains with a DM of less than 20% could be used as a starch source in the diet of growing steers.

Effects of Thymol, Eugenol and Malate on In vitro Rumen Microbial Fermentation

  • Kim, Do-Hyung;Kim, Kyoung-Hoon;Choi, Chang-Won;Hong, Seong-Koo;Seol, Yong-Joo;Kwon, Eung-Gi;Kim, Wan-Young;Nam, In-Sik;Lee, Sung-Sill;Oh, Young-Kyoon
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.511-520
    • /
    • 2009
  • The purpose of this study was to investigate effects of increased levels of eugenol, thymol and malate on pH and the concentrations of VFA, lactate and ammonia-N during in vitro ruminal incubation. One Hanwoo beef steer (741 kg) fitted with a rumen cannula was used and fed 0.5 kg/day rice straw and 10 kg/day corn-based concentrate (ratio of concentrate to rice straw = 95 : 5 on DM basis). Three different doses of thymol, eugenol and malate were used. Treatments of the experiment were as follows: Treatments of thymol were control (1g D-glucose/40ml), T1 (1g D-glucose + 40 mg thymol/40 ml), T2 (1g D-glucose + 50 mg thymol/40 ml) and T3 (1g D-glucose + 60 mg thymol/40 ml). Treatments of eugenol were control (1g D-glucose/40 ml), E1 (1g D-glucose + 55 mg eugenol/40 ml), E2 (1g D-glucose + 65 mg eugenol/40 ml) and E3 (1g D-glucose + 75 mg eugenol/40 ml). Treatments of malate were control (1g D-glucose/40ml), M1 (1g D-glucose + 25 mg malate/40ml), M2 (1g D-glucose + 50 mg malate/40 ml) and M3 (1g D-glucose + 100 mg malate/40 ml). The results of this study showed that eugenol and thymol have improved stability of the ruminal fermentation by decreasing lactic acid concentration and increasing ruminal pH. However, it inhibited the production of total VFA, acetate and propionate. Malate also improved stability of the ruminal fermentation by decreasing lactic acid concentration and increasing ruminal pH, but it had a very little effect on ruminal lactate concentrations and pH. On the other hand, malate did not decrease the concentrations of total VFA, acetate and propionate. Therefore, at the low ruminal pH expected in high-concentrate diets, thymol, eugenol, and malate are potentially useful in Hanwoo finishing diets. Further studies are necessary for determining the effectiveness of these additives on in vivo rumen fermentation and animal performance in Hanwoo finishing steers.