• Title/Summary/Keyword: In vitro survival rate

Search Result 358, Processing Time 0.027 seconds

Sperm Cytosolic Factor Activation for Bovine Somatic Cell Nuclear Transfer

  • Shin, Tae-Young
    • Journal of Embryo Transfer
    • /
    • v.26 no.3
    • /
    • pp.171-180
    • /
    • 2011
  • In this study I report that in vitro development rates of bovine nuclear transfer embryos activated either with boar sperm cytosolic factor (SCF) or with ionomycin followed by cycloheximide (CHX) and subsequent in vivo developmental rates after embryo transfer are related to blastocyst quality as evaluated by apoptosis analysis. SCF was extracted from porcine semen then purified for post-activation injection after nuclear transfer. The optimal timing for SCF injection was determined to be at least 22 h post-IVM for parthenogenetic activation of bovine oocyies. A total of 364 oocytes were successfully enucleated and 268 (73.6%) fused and were injected with SCF. The survival rate of fused and injected embryos was 109/113 (96.5%) after 2 h. The cleavage rates of nuclear transfer embryos after 3 d of culture in the ionomycin/CHX treated group were significantly higher than those of the SCF-activated group (93.3% vs 81.7%, p<0.01, respectively). However, at 7 d and 9 d there was no significant difference between the total developmental rates to blastocyst for either treatment group. Total blastocyst cell numbers were also not significantly different between the two activation treatments (ionomycin/CHX: 149.5${\pm}$7.7 vs. SCF: 139.3${\pm}$4.4 cells). In contrast, the apoptotic levels in the SCF blastocysts were higher than those produced after the chemical treatment (28.2${\pm}$5.1% vs. 8.8${\pm}$0.6%, respectively). A total of 18 expanded or hatching blastocysts was transferred to nine synchronized recipients in each activation group; 5/9 (55.5%) and 2/9 (22.2%) were pregnant at 40 d in the ionomycin/CHX treatment and SCF activated group, respectively. However, only one went to term in the ionomycin/CHX treatment while none of the pregnancies from the SCF group were maintained by 90 d. In conclusion, these results suggest that SCF derived from different species is a limited activator to be used for activation after bovine nuclear transfer in lieu of a chemical activation protocol.

Kami-bang-pung-tong-sung-san is Involved in Protecting Neuronal Cells from Cytotoxic Insults

  • Na Young Cheul;Nam Gung Uk;Lee Yong Koo;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.265-273
    • /
    • 2004
  • KBPTS is the fortified prescription of Bang-pung-tong-sung-san (BPTS) by adding Spatholobi Clulis and Salviae Miltiorrzae Radix. BPTS prescription has been used in Qriental medicine for the treatments of vascular diseases including hypertension, stroke, and arteriosclerosis, and nervous system diseases. Yet, the overall mechanism underlying its activity at the cellular levels remains unknown. To investigate the protective role of KBPTS on brain functions, noxious stimulations were applied to neurons in vitro and in vivo. KBPTS pretreatment in cultured cortical neurons of albino ICR mice rescued death caused by AMPA, NMDA, and kainate as well as by buthionine sulfoximine (BSO) and ferrous chloride (Fe/sup 2+/) treatments. Furthermore, KBPTS promoted animal's recovery from coma induced by a sublethal dose of KCN and improved survival by a lethal dose of KCN. To examine its physiological effects on the nervous system, we induced ischemia in the Sprague-Dawley rat's brain by middle cerebral artery (MCA) occlusion. Neurological examination showed that KBPTS reduced the time which is required for the animal after MCA occlusion to respond in terms of forelimb and hindlimb movement$. Histological examination revealed that KBPTS reduced ischemic area and edema rate and also protected neurons in the cerebral cortex and hippocampus from ischemic damage. Thus, the present data suggest that KBPTS may play an important role in protecting neuronal cells from external noxious stimulations.

Integration and Expression of Goat ${\beta}-Casein/hGH$ Hybrid Gene in a Transgenic Goat

  • Lee, Chul-Sang;Lee, Doo-Soo;Fang, Nan-Zhu;Oh, Keon-Bong;Shin, Sang-Tae;Lee, Kyung-Kwang
    • Reproductive and Developmental Biology
    • /
    • v.30 no.4
    • /
    • pp.293-299
    • /
    • 2006
  • In order to generate transgenic goats expressing human growth hormone (hGH) in their mammary glands, goat ${\beta}-Casein/hGH$ hybrid gene was introduced into goat zygotes by pronuclear microinjection. DNA-injected embryos were transferred to the oviduct of recipients at 2-cell stage or to the uterus at morula/blastocyst stage after cultivation in glutathione-supplemented mSOF medium in vitro. Pregnancy and survival rate were not significantly different between 2-cell embryos and morula/blastocysts transferred to oviduct and uterus, respectively. One transgenic female goat was generated from 153 embryos survived from DNA injection. Southern blot analysis revealed that the transgenic goat harbored single-copy transgene with a partial deletion in its sequences. Despite of the partial sequence deletion, the transgene was successfully expressed hGH at the level of $72.1{\pm}15.1{\mu}g/ml$ in milk throughout lactation period, suggesting that the sequence deletion had occurred in non-essential part of the transgene for the transgene expression. Unfortunately, however, the transgene was not transmitted to her offspring during three successive breeding seasons. These results demonstrated that goat ${\beta}-casein/hGH$ gene was integrated into the transgenic goat genome in a mosaic fashion with a partial sequence deletion, which could result in a low level expression of hGH and a failure of transgene transmission.

In vitro and in vivo Biological Responses of Proton Irradiation from MC-50 Cyclotron

  • Jung, Uhee;Eom, Hyeon Soo;Jeong, Kwon;Park, Hae-Ran;Jo, Sung-Kee
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.223-229
    • /
    • 2012
  • In this study, we investigated the biological damage and stress responses induced by ion beam (proton beam) irradiation as a basis for the development of protective measures against space radiation. We examined the biological effects of proton beam produced by MC-50 cyclotron at KIRAMS on the cultured cells and mice. The proton beam energy used in this study was 34.9 MeV and the absorption dose rate for cells and mice were $0.509Gy\;sec^{-1}$ and $0.65Gy\;sec^{-1}$, respectively. The cell survival rates measured by plating efficiency showed the different sensitivity and dose-relationship between CHO cells and Balb/3T3 cells. HGPRT gene mutation frequency in Balb/3T3 was $15{\times}10^{-6}Gy^{-1}$, which was similar to the reported value of X-ray. When stress signaling proteins were examined in Balb/3T3 cells, $I{\kappa}B-{\alpha}$ decreased markedly whereas p53, phospho-p53, and Rb increased after proton beam irradiation, which implied that the stress signaling pathways were activated by proton beam irradiation. In addition, cellular senescence was induced in IMR-90 cells. In the experiments with C57BL/6 mouse, the immune cells (white blood cells, lymphocytes) in the peripheral blood were greatly reduced following proton beam irradiation whereas red blood cells and platelets showed relatively little change. These results can be utilized as basic data for studying the biological effects of proton beam using MC-50 cyclotron with respect to proton therapy research as well as space radiation research.

Inhibition of Autolysis by Lipase LipA in Streptococcus pneumoniae Sepsis

  • Kim, Gyu-Lee;Luong, Truc Thanh;Park, Sang-Sang;Lee, Seungyeop;Ha, Jung Ah;Nguyen, Cuong Thach;Ahn, Ji Hye;Park, Ki-Tae;Paik, Man-Jeong;Pyo, Suhkneung;Briles, David E.;Rhee, Dong-Kwon
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.935-944
    • /
    • 2017
  • More than 50% of sepsis cases are associated with pneumonia. Sepsis is caused by infiltration of bacteria into the blood via inflammation, which is triggered by the release of cell wall components following lysis. However, the regulatory mechanism of lysis during infection is not well defined. Mice were infected with Streptococcus pneumoniae D39 wild-type (WT) and lipase mutant (${\Delta}lipA$) intranasally (pneumonia model) or intraperitoneally (sepsis model), and survival rate and pneumococcal colonization were determined. LipA and autolysin (LytA) levels were determined by qPCR and western blotting. S. pneumoniae Spd_1447 in the D39 (type 2) strain was identified as a lipase (LipA). In the sepsis model, but not in the pneumonia model, mice infected with the ${\Delta}lipA$ displayed higher mortality rates than did the D39 WT-infected mice. Treatment of pneumococci with serum induced LipA expression at both the mRNA and protein levels. In the presence of serum, the ${\Delta}lipA$ displayed faster lysis rates and higher LytA expression than the WT, both in vitro and in vivo. These results indicate that a pneumococcal lipase (LipA) represses autolysis via inhibition of LytA in a sepsis model.

Effects of Several Culture Conditions on in vivo Growth and Development in Gerbera hybrida (기내 배양환경이 거베라 유묘의 기외이식 후 생육에 미치는 영향)

  • 이현숙;임기병;정재동;김창길
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.2
    • /
    • pp.91-95
    • /
    • 2001
  • Propagules grown at different in vitro culture conditions such as heterotrophic, mixotrophic and photoautotrophic conditions were investigated for growth, total photosynthesis ratio and flowering. Survival rate of propagules after transplanting was higher in photoautotrophic propagules than in the heterotrophic and mixotrophic ones. Total photosynthesis was higher plantlets growth in photoautotrophic (154 mg$CO_2$.mgDW$^{-1}$ h$^{-2}$ ) those grown than in mixotrphpic (148 mg$CO_2$.mgDW$^{-1}$ h$^{-2}$ ) and heterotrophic (102 mg$CO_2$.mgDW$^{-1}$ h$^{-2}$ ) 30 days after transplanting into fields. Day to flowering of the plant cultured in photoautotrophic condition was shortened by 7~10 days than those of heterotrophic and mixotrophic ones. Length of the petiole, number of leaves, leaf area and chlorophyll content were also increased.

  • PDF

Developmental competence and Effects of Coculture after Crypreservation of Blastomere-Biopsied Mouse Embryos as a Preclinical Model for Preimplantation Genetic Diagnosis (착상 전 유전진단 기술 개발의 동물실험 모델로서 할구 생검된 생쥐 배아에서 동결보존 융해 후 배아 발생 양상과 공배양 효과에 관한 연구)

  • Kim, Seok-Hyun;Kim, Hee-Sun;Ryu, Buom-Yong;Choi, Sung-Mi;Pang, Myung-Geol;Oh, Sun-Kyung;Jee, Byung-Chul;Suh, Chang-Suk;Choi, Young-Min;Kim, Jung-Gu;Moon, Shin-Yong;Lee, Jin-Yong;Chae, Hee-Dong;Kim, Chung-Hoon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.1
    • /
    • pp.47-57
    • /
    • 2000
  • Objective: The effects of cryopreservation with or without coculture on the in vitro development of blastomere-biopsied 8-cell mouse embryos were investigated. This experimental study was originally designed for the setup of a preclinical mouse model for the preimplantation genetic diagnosis (PGD) in human. Methods: Eight-cell embryos were obtained after in vitro fertilization (IVF) from F1 hybrid mice (C57BL(표현불가)/CBA(표현불가)). Using micromanipulation, one to four blastomeres were aspirated through a hole made in the zona pellucida by zona drilling (ZD) with acid Tyrode's solution (ATS). A slow-freezing and rapid-thawing protocol with 1.5M dimethyl sulfoxide (DMSO) and 0.1M sucrose as cryoprotectant was used for the cryopreservation of blastomere- biopsied 8-cell mouse embryos. After thawing, embryos were cultured for 110 hours in Ham's F-10 supplemented with 0.4% bovine serum albumin (BSA). In the coculture group, embryos were cultured for 110 hours on the monolayer of Vero cells in the same medium. The blastocyst formation was recorded, and the embryos developed beyond blastocyst stage were stained with 10% Giemsa to count the total number of nuclei in each embryo. Results: The survival rate of embryos after cryopreservation was significantly lower in the blastomere-biopsied (7/8, 6/8, 5/8, and 4/8 embryos) groups than in the non-biopsied, zona intact (ZI) group. Without the coculture, the blastocyst formation rate of embryos after cryopreservation was not significantly different among ZI, the zona drilling only (ZD), and the balstomere-biopsied groups, but it was significantly lower than in the non-cryopreserved control group. The mean number of cells in embryos beyond blastocyst stage was significantly higher in the control group ($50.2{\pm}14.0$) than in 6/8 ($26.5{\pm}6.2$), 5/8 ($25.0{\pm}5.5$), and 4/8 ($17.8{\pm}7.8$) groups. With the coculture using Vero cells, the blastocyst formation rate of embryos after cryopreservation was significantly lower in 5/8 and 4/8 groups, compared with the control, 7/8, and 6/8 groups. The mean number of cells in embryos beyond blastocyst stage was also significantly lower in 4/8 group ($25.9{\pm}10.2$), compared with the control ($50.2{\pm}14.0$), 7/8 ($56.0{\pm}22.2$), and 6/8 ($55.3{\pm}25.5$) groups. Conclusion: After cryopreservation, blastomere-biopsied mouse embryos have a significantly impaired developmental competence in vitro, but this detrimental effect might be prevented by the coculture with Vero cells in 8-cell mouse embryos biopsied one or two blastomeres. Biopsy of mouse embryos after ZD with ATS is a safe and highly efficient preclinical model for PGD of human embryos.

  • PDF

Inhibition of Growth and Induction of Differentiation of SMMC-7721 Human Hepatocellular Carcinoma Cells by Oncostatin M

  • Kong, N.;Zhang, X.M.;Wang, H.T.;Mu, X.P.;Han, H.Z.;Yan, W.Q.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.747-752
    • /
    • 2013
  • Oncostatin M (OSM) is a multifunctional cellular regulator acting on a wide variety of cells, which has potential roles in the regulation of gene activation, cell survival, proliferation and differentiation. Previous studies have shown that OSM can induce morphological and/or functional differentiation and maturation of many tumor cells. However, the action of OSM on the induction of differentiation of human hepatocellular carcinoma (HCC) has not been reported. Here, we investigated the effects of different concentrations of OSM on human HCC cell line SMMC-7721 growth, proliferation, cell cycling, apoptosis and differentiation in vitro. Cell growth was determined via MTT assay, proliferation by cell cycle analysis, apoptosis by flow cytometry, morphology by transmission electronic microscopy, and cell function by detection of biochemical markers. Our results demonstrated that OSM strongly inhibited the growth of SMMC-7721 cells in a dose-dependent manner, associated with decreased clonogenicity. Cell cycle analysis revealed a decreased proportion of cells in S phase, with arrest at G0/G1. The apotosis rate was increased after OSM treatment compared to the control. These changes were associated with striking changes in cellular morphology, toward a more mature hepatic phenotype, accompanied by significant reduction of the expression of AFP and specific activity of ${\gamma}$-GT, with remarkable increase in secretion of albumin and ALP activity. Taken together, our findings indicate that OSM could induce the differentiation and reduce cell viability of SMMC-7721 cells, suggesting that differentiation therapy with OSM offers the opportunity for therapeutic intervention in HCC.

Anti-inflammatory Activity on LPS-stimulated in vitro RAW 264.7 Cells and in vivo Zebrafish of Heterosigma akshiwo

  • Kim, Junseong;Choi, Youn Kyung;Lee, Ji-Hyeok;Kim, Seo-Young;Kim, Hyun-Soo;Jeon, You-Jin;Heo, Soo-Jin
    • Journal of Chitin and Chitosan
    • /
    • v.22 no.3
    • /
    • pp.185-193
    • /
    • 2017
  • Red tide Heterosigma akashiwo (H. akashiwo), a microscopic alga of the class Raphidophyceae, causes extensive damage to all marine ecosystems. It is essential to reduce the damage to marine ecosystems for them to be used as a resource. In this study, we used organic solvent fractionation to obtain an ethyl acetate-methanol extract from H. akashiwo (HAEM80) and then evaluated its anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and a zebrafish model. HAME80 markedly inhibited the production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$). It also down-regulated the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and decreased the secretion of interleukin-$1{\beta}$ ($IL-1{\beta}$) in LPS-stimulated RAW 264.7 cells. HAME80 reduced yolk edema and improved the survival rate of LPS-stimulated zebrafish embryos; in addition, the extract significantly reduced the production of ROS and NO and attenuated cell death in this model. Gas chromatography-mass spectrometry (GC-MS) of the extract was used to confirm the identity of peaks 1-20. Taken together, our data suggest that H. akashiwo is a beneficial anti-inflammatory agent.

Oral Administration of Poly-Gamma-Glutamic Acid Significantly Enhances the Antitumor Effect of HPV16 E7-Expressing Lactobacillus casei in a TC-1 Mouse Model

  • Kim, Eunjin;Yang, Jihyun;Sung, Moon-Hee;Poo, Haryoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1444-1452
    • /
    • 2019
  • The conventional prophylactic vaccines for human papillomavirus (HPV) efficiently prevent infection with high-risk HPV types, but they do not promote therapeutic effects against cervical cancer. Previously, we developed HPV16 E7-expressing Lactobacillus casei (L. casei-E7) as a therapeutic vaccine candidate for cervical cancer, which induces antitumor therapeutic effects in a TC-1 murine cancer model. To improve the therapeutic effect of L. casei-E7, we performed co-treatment with poly-gamma-glutamic acid (${\gamma}-PGA$), a safe and edible biomaterial naturally secreted by Bacillus subtilis. We investigated their synergistic effect to improve antitumor efficacy in a murine cancer model. The treatment with ${\gamma}-PGA$ did not show in vitro cytotoxicity against TC-1 tumor cells; however, an enhanced innate immune response including activation of dendritic cells was observed. Mice co-administered with ${\gamma}-PGA$ and L. casei-E7 showed significantly suppressed growth of TC-1 tumor cells and an increased survival rate in TC-1 mouse models compared to those of mice vaccinated with L. casei-E7 alone. The administration of ${\gamma}-PGA$ markedly enhanced the activation of natural killer (NK) cells but did not increase the E7-specific cytolytic activity of $CD8^+$ T lymphocytes in mice vaccinated with L. casei-E7. Overall, our results suggest that oral administration of ${\gamma}-PGA$ induces a synergistic antitumor effect in combination with L. casei-E7.