• Title/Summary/Keyword: In vitro generation

Search Result 423, Processing Time 0.024 seconds

Generation of Miniaturized Ovaries by In Vitro Culture from Mouse Gonads

  • Jang, Si Won;Choi, Hyun Woo
    • Development and Reproduction
    • /
    • v.25 no.3
    • /
    • pp.173-183
    • /
    • 2021
  • The incidence of infertility among individuals of reproductive age has been growing due to genetic and environmental factors, and considerable research efforts are focused on solving this issue. Ovarian development is an overly complex process in the body, involving the interaction between primordial germ cells and gonad somatic cells. However, follicles located in the center of the in vitro ovary are poorly formed owing to ovarian complexity, nutrient deficiency, and signaling deficiency. In the present study, we optimized methods for dissociating gonads and culture conditions for the in vitro generation of miniaturized ovaries. The gonads from embryos were dissociated into cell masses and cultured on a Transwell-COL membrane for 3-5 weeks. Approximately 12 follicles were present per in vitro ovary. We observed that miniaturized ovaries successfully matured to MII oocytes in vitro from 150 to 100 ㎛ gonad masses. This method will be useful for investigating follicle development and oocyte production.

Study on Production of Cloned Animals by Recycling Nuclear Transplantation II. Improved Second Generation Cloning of Rabbit Embryos Using Donor Nuclei with Synchronized Cell Cycles (반복핵이식에 의한 복제동물 생산에 관한 연구 II. 토끼에서 공핵배의 세포주기 조절에 의한 제2세대 복제배의 생산효율 개선)

  • 이효종;전병균;박충생;최상용;윤창현;강대진
    • Journal of Embryo Transfer
    • /
    • v.10 no.1
    • /
    • pp.73-82
    • /
    • 1995
  • large scale production of cloned embryos requires the technology of multiple generation nuclear transplantation(NT) using NT embryos as the subsequent donor nuclei. The purposes of this study were producing the second generation cloned rabbit embryos, and also to determine the electrofusion rate and in vitro developmental potential comparatively in the cloned embryos of the first and second NT generation. The embryos of 16-cell stage were collected from the mated does by flushing oviducts with Dulbecco's phosphate buffered saline(D-PBS) containing 10% fetal calf serum(FCS) at 47 hours after hCG injection In the first generation NT, the nuclear donor embryos were synchronized in the phase of Gi /S transition of 32-cell stage. The first generation NT embryos which were developed to 8-cell were synchronized in Gi /S transition phase of the following 16-cell stage and used as donor nuclei for second generation Synchronization of the cell cycle of blastomeres was induced, first, using an inhibitor of microtuble polymerization, colcemid for 10 hours to arrest blastomeres in M phase, and secondly, using a DNA synthesis inhibitor, aphidicolin for 1.5 to 2 hours to arrest them in Gi /S transition boundary. The recipient cytoplasms were obtained by removing the nucleus and the first polar body from the oocytes collected at 14 hours after hCG injection. The separated donor blastomeres were injected into the enucleated recipient oocytes by micromanipulation and were electrofused by electrical stimulation of three pulses for 60 $\mu$sec at 1.25 kV /cm in 0.28 M rnannitol solution The fused oocytes were co-cultured with a monolayer of rabbit oviductal epithelial cells in M-199 solution containing 10% FCS for 120 hours at 39$^{\circ}C$ in a 5% $CO_2$ incubator. Following in vitro culture of the first and second generation cloned embryos to blastocyst stage, they were stained with Hoechst 33342 dye for counting the number of blastomeres by fluorescence microscopy. The results obtained were summarized as follows: 1. The electrofusion rate was found to be similar as 79.4 and 91.5% in the first and second generation NT rabbit embryos, respectively. 2. The in vitro developmental potential to blastocyst stage of the second generation NT embryos (23.3%) was found significantly(p<0.05) lower, compared with that of the first generation NT embryos (56.8%). 3. The mean blastomeres counts of embryos developed to blastosyst stage following in vitro culture for 120 hours and also their daily cell cycles during the culture period were decreased significantly (p<0.05) to 104.3 cells and 1.33 cylces in the second NT generation, compoared with 210.4 cells and 1.54 cycles in the first NT generation, respectively.

  • PDF

Effect of Temperature, pH and Salt Concnetration on formation of N-nitrosamines during Kimchi Fermentation (김치숙성중 숙성온도, pH 및 소금 농도가 니트로스아민의 생성에 미치는 영향)

  • 김준환;장영상;신효선
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.4
    • /
    • pp.332-336
    • /
    • 1998
  • The effect of ripening temperature, pH and salinity on the formation of Nnitrosamine (NA) during Kimchi fermentation and in vitro was studied, respectively. During Kimchi fermentation for six weeks at cold storage temperature ($4^{\circ}C$) and room temperature ($16{\pm}2^{\circ}C$), the contents of nitrite and dimethylamine (DMA) showed variation at room temperature but no variation at cold storage temperature. The maximum generation of nitrosodimethylamine (NDMA) resulted low content ($2.69\;\mu\textrm{g}/kg$) at cold storage temperature but started to increase after one week fermentation and reached to the 18-fold higher generation ($49.6\;\mu\textrm{g}/kg$) at room temperature. During Kimchi fermentation, no correlation was observed between the variation of nitrite and DMA content and the generation of NDMA. However, pH showed effective relation to NDMA generation such as the highest NDMA generation was obtained at lowest pH 4. During in vitro test, higher temperature and lower pH resulted more NDMA generation and generation amount was affected more by pH. Also, the salinity of Kimchi provided inhibitory effects on the formation of NDMA. NDMA was produced $5.86\;\mu\textrm{g}/kg$ at normal salinity (2.5%) but $90.9\;\mu\textrm{g}/kg$ at lower salinity (15%) after three week. The higher salinity showed lower formation of NDMA in vitro test, too.

  • PDF

Bombyx mori Nucleopolyhedrovirus Bacmid Enabling Rapid Generation of Recombinant Virus by In Vitro Transposition

  • Tao, Xue Ying;Choi, Jae Young;Kim, Yang-Su;Lee, Seok Hee;An, Saes Byeol;Pang, Ying;Kim, Jong Hoon;Kim, Woo Jin;Je, Yeon Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.386-392
    • /
    • 2015
  • A novel recombinant bacmid, bEasyBm, that enables the easy and fast generation of pure recombinant baculovirus without any purification step was constructed. In bEasyBm, attR recombination sites were introduced to facilitate the generation of a recombinant viral genome by in vitro transposition. Moreover, the extracellular RNase gene from Bacillus amyloliquefaciens, barnase, was expressed under the control of the Cotesia plutellae bracovirus early promoter to negatively select against the nonrecombinant background. The bEasyBm bacmid could only replicate in host insect cells when the barnase gene was replaced with the gene of interest by in vitro transposition. When bEasyBm was transposed with pDualBac-EGFP, the resulting recombinant virus, EasyBm-EGFP, showed high levels of EGFP expression efficiency compared with that of non-purified recombinant virus BmGOZA-EGFP, which was constructed using the bBmGOZA system. In addition, nonrecombinant backgrounds were not detected in unpurified EasyBm-EGFP stocks. Based on these results, a high-throughput system for the generation of multiple recombinant viruses at a time was established.

In Vitro Generation of Luminal Vasculature in Liver Organoids: From Basic Vascular Biology to Vascularized Hepatic Organoids

  • Hyo Jin Kim;Gyeongmin Kim;Kyun Yoo Chi;Jong-Hoon Kim
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • Liver organoids have gained much attention in recent years for their potential applications to liver disease modeling and pharmacologic drug screening. Liver organoids produced in vitro reflect some aspects of the in vivo physiological and pathological conditions of the liver. However, the generation of liver organoids with perfusable luminal vasculature remains a major challenge, hindering precise and effective modeling of liver diseases. Furthermore, vascularization is required for large organoids or assembloids to closely mimic the complexity of tissue architecture without cell death in the core region. A few studies have successfully generated liver organoids with endothelial cell networks, but most of these vascular networks produced luminal structures after being transplanted into tissues of host animals. Therefore, formation of luminal vasculature is an unmet need to overcome the limitation of liver organoids as an in vitro model investigating different acute and chronic liver diseases. Here, we provide an overview of the unique features of hepatic vasculature under pathophysiological conditions and summarize the biochemical and biophysical cues that drive vasculogenesis and angiogenesis in vitro. We also highlight recent progress in generating vascularized liver organoids in vitro and discuss potential strategies that may enable the generation of perfusable luminal vasculature in liver organoids.

A Study on the Decomposition of Amygdalin Using an In Vitro Assay (Amygdalin의 in Vitro 분해에 관한 연구)

  • Kwon, Hoon-Jeong;Jo, Yong-Jin
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.47-53
    • /
    • 2007
  • Amygdalin is a cyanogenic glycoside which is commonly found in almonds, bamboo shoots, and apri-cot kernels, and peach kernels. Amygdalin was first hydrolysed into prunasin, then degraded into cyanohydrin by sequential two-stage mechanism. The objective of this study was to examine the amygdalin decomposition and cyanide formation at various in vitro conditions, including acid, enzyme and anaerobic microbes (AM) in human feces (HF). In acid hydrolysis mimicking gastric environment, amygdalin was degraded to cyanide up to 0.2% in specific pH. In contrast, enzyme assay showed higher cyanide generation either by ${\beta}$-glucosidase, or by incubation with microbe. In conclusion, we are convinced of cyanide generation are occurred mainly by microbiological activities of the gut flora up to 41.53%. After ingestion with some staff, the degree and site of degradation in an organism is a key parst of regulatory decision making of that staff.

Synthetic approach to the generation of antibody diversity

  • Shim, Hyunbo
    • BMB Reports
    • /
    • v.48 no.9
    • /
    • pp.489-494
    • /
    • 2015
  • The in vitro antibody discovery technologies revolutionized the generation of target-specific antibodies that traditionally relied on the humoral response of immunized animals. An antibody library, a large collection of diverse, pre-constructed antibodies, can be rapidly screened using in vitro display technologies such as phage display. One of the keys to successful in vitro antibody discovery is the quality of the library diversity. Antibody diversity can be obtained either from natural B-cell sources or by the synthetic methods that combinatorially generate random nucleotide sequences. While the functionality of a natural antibody library depends largely upon the library size, various other factors can affect the quality of a synthetic antibody library, making the design and construction of synthetic antibody libraries complicated and challenging. In this review, we present various library designs and diversification methods for synthetic antibody library. From simple degenerate oligonucleotide synthesis to trinucleotide synthesis to physicochemically optimized library design, the synthetic approach is evolving beyond the simple emulation of natural antibodies, into a highly sophisticated method that is capable of producing high quality antibodies suitable for therapeutic, diagnostic, and other demanding applications. [BMB Reports 2015; 48(9): 489-494]

Study on Production of Cloned Animals by Recycling Nuclear Transplantation III. Production of Third Generation Cloned Embryos in Rabbits (반복핵이식에 의한 복제동물 생산에 관한 연구 III. 토끼에서 제3세대 복제수정란의 생산)

  • Lee Hyo-jong;Jeon Byeong-gyun;Yin Xi-jun;Park Choong-saeng;Choe Sang-yong;Yun Chang-hyun;Kang Dae-jin
    • Journal of Veterinary Clinics
    • /
    • v.12 no.1
    • /
    • pp.877-886
    • /
    • 1995
  • The recycling nuclear transplantation(NT) technique has the powerful potential of producing a large number of genetically identical embryos and offsprings from one embryo. Multiple generational cloning by this technique utilizes the NT embryo itself as the donor for the next generation of cloning. In this experiment, we have produced the third generational cloned embryos by recycling NT. Further we examined comparatively the electrofusion rate and in vitro developmental potential in the cloned embryos of the first second and third generations. The embryos of 16-cell stage were collected from the mated does by flushing oviducts with Dulberco's phosphate buffered saline containing 10 % fetal calf serum(FCS) at 47 hours after hCG injection. In the first generation NT, the nuclear donor embryos were synchronized in the phase of Gl/S transition of 32-cell stage. The first and second generation NT embryos developed to 16-cell were used as donor nuclei for second and third generation. The recipient cytoplasms were utilized the oocytes collected at 14 hours after hCG injection, following revoming the nucleus and the first polar body by micromanipulation. The separated blastomeres were injected into the enucleated recipient oocytes by micromanipulation and were fused by electrical stimulation. The electrofusion rate was seen to be 78.0, 88.0 and 90.3 % in the first second and third generation NT rabbit embryos, respectively. The fused oocytes were co-cultured with a monolayer of rabbit oviductal epithelial cells in M-199 solution containing 10 % FCS for 120 hours at 39$^{\circ}C$ in a 5% $CO_2$ incubator. The in vitro developmental potential to blastocyst stage was significantly(P<0.05) decreased in the third(7.2 %) generation NT embryos compared to the first(53.1 %) and second(16.1 %) generation NT embryos. Following in vitro development to blastocyst stage, they were stained with Hoechst 33342 dye for counting the number of blastomeres by fluorescence microscopy. The mean blastomere numbers and cell cycle numbers of NT embryos during the culture period were significantly(p<0.05) decreased in the second(93.9 cells and 6.55 cylces) and third(81.5 cells and 1.35 cylces) generation, compared to the first(189.9 cells and 7.55 cylces) generation.

  • PDF

In Vitro Inhibition of Cyclooxygenase by Aspalatone (아스파라톤에 의한 사이클로옥시게나제의 저해 - in Vitro)

  • 서대연;한병훈
    • YAKHAK HOEJI
    • /
    • v.39 no.5
    • /
    • pp.565-568
    • /
    • 1995
  • A new antiplatelett agent, aspalatone ([3-(2-methyl-4-pyronyl)]-2-acetyloxybenzoate) was demonstrated to inhibit MDA generation from arachidonic acid catalyzed by partially purified bovine seminal vesicle cyclooxygenase. This inhibition was also observed with acetylsalicylic acid. The results suggest that the mechanism for the antiplatelet effect of aspalatone is, like acetylsalicylic acid, due to its inhibition of cyclooxygenase.

  • PDF

Generation of Tolerogenic Dendritic Cells and Their Therapeutic Applications

  • Seungbo Yoo;Sang-Jun Ha
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.52-60
    • /
    • 2016
  • Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that bridge innate and adaptive immune responses, thereby leading to immune activation. DCs have been known to recognize pathogen-associated molecular patterns such as lipopolysaccharides (LPS) and nucleic acids via their pattern recognition receptors, which trigger signaling of their maturation and effector functions. Furthermore, DCs take up and process antigens as a form of peptide loaded on the major histocompatibility complex (MHC) and present them to T cells, which are responsible for the adaptive immune response. Conversely, DCs can also play a role in inducing immune suppression under specific circumstances. From this perspective, the role of DCs is related to tolerance rather than immunity. Immunologists refer to these special DCs as tolerogenic DCs (tolDCs). However, the definition of tolDCs is controversial, and there is limited information on their development and characteristics. In this review, we discuss the current concept of tolDCs, cutting-edge methods for generating tolDCs in vitro, and future applications of tolDCs, including clinical use.