DOI QR코드

DOI QR Code

Generation of Miniaturized Ovaries by In Vitro Culture from Mouse Gonads

  • Jang, Si Won (Dept. of Agricultural Convergence Technology, Jeonbuk National University) ;
  • Choi, Hyun Woo (Dept. of Agricultural Convergence Technology, Jeonbuk National University)
  • Received : 2021.05.16
  • Accepted : 2021.08.17
  • Published : 2021.09.30

Abstract

The incidence of infertility among individuals of reproductive age has been growing due to genetic and environmental factors, and considerable research efforts are focused on solving this issue. Ovarian development is an overly complex process in the body, involving the interaction between primordial germ cells and gonad somatic cells. However, follicles located in the center of the in vitro ovary are poorly formed owing to ovarian complexity, nutrient deficiency, and signaling deficiency. In the present study, we optimized methods for dissociating gonads and culture conditions for the in vitro generation of miniaturized ovaries. The gonads from embryos were dissociated into cell masses and cultured on a Transwell-COL membrane for 3-5 weeks. Approximately 12 follicles were present per in vitro ovary. We observed that miniaturized ovaries successfully matured to MII oocytes in vitro from 150 to 100 ㎛ gonad masses. This method will be useful for investigating follicle development and oocyte production.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP; Ministry of Science, ICT & Future Planning) (NRF-2017R1C1B5077043).

References

  1. Aramaki S, Hayashi K, Kurimoto K, Ohta H, Yabuta Y, Iwanari H, Mochizuki Y, Hamakubo T, Kato Y, Shirahige K, Saitou M (2013) A mesodermal factor, T, specifies mouse germ cell fate by directly activating germline determinants. Dev Cell 27:516-529. https://doi.org/10.1016/j.devcel.2013.11.001
  2. Brown MA, Wallace CS, Anamelechi CC, Clermont E, Reichert WM, Truskey GA (2007) The use of mild trypsinization conditions in the detachment of endothelial cells to promote subsequent endothelialization on synthetic surfaces. Biomaterials 28:3928-3935. https://doi.org/10.1016/j.biomaterials.2007.05.009
  3. Dolega ME, Abeille F, Picollet-D'hahan N, Gidrol X (2015) Controlled 3D culture in Matrigel microbeads to analyze clonal acinar development. Biomaterials 52:347-357. https://doi.org/10.1016/j.biomaterials.2015.02.042
  4. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-156. https://doi.org/10.1038/292154a0
  5. Fawcett DW (1961) Intercellular bridges. Exp Cell Res 8:174-187. https://doi.org/10.1016/0014-4827(61)90347-0
  6. Gondos B (1973) Germ cell degeneration and intercellular bridges in the human fetal ovary. Z Zellforsch Mikrosk Anat 138:23-30. https://doi.org/10.1007/BF00307075
  7. Gondos B, Conner LA (1973) Ultrastructure of developing germ cells in the fetal rabbit testis. Am J Anat 136:23-41. https://doi.org/10.1002/aja.1001360104
  8. Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M (2012) Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338:971-975. https://doi.org/10.1126/science.1226889
  9. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146:519-532. https://doi.org/10.1016/j.cell.2011.06.052
  10. Hayashi K, Saitou M (2013) Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells. Nat Protoc 8:1513-1524. https://doi.org/10.1038/nprot.2013.090
  11. Hickford DE, Frankenberg S, Pask AJ, Shaw G, Renfree MB (2011) DDX4 (VASA) is conserved in germ cell development in marsupials and monotremes. Biol Reprod 85:733-743. https://doi.org/10.1095/biolreprod.111.091629
  12. Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, Shimamoto S, Imamura T, Nakashima K, Saitou M, Hayashi K (2016) Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539:299-303. https://doi.org/10.1038/nature20104
  13. Hubner K, Fuhrmann G, Christenson LK, Kehler J, Reinbold R, De La Fuente R, Wood J, Strauss JF III, Boiani M, Scholer HR (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300:1251-1256. https://doi.org/10.1126/science.1083452
  14. Irie N, Weinberger L, Tang WWC, Kobayashi T, Viukov S, Manor YS, Dietmann S, Hanna JH, Surani MA (2015) SOX17 is a critical specifier of human primordial germ cell fate. Cell 160:253-268. https://doi.org/10.1016/j.cell.2014.12.013
  15. Kim EJ, Lee J, Youm HW, Kim SK, Lee JR, Suh CS, Kim SH (2018) Comparison of follicle isolation methods for mouse ovarian follicle culture in vitro. Reprod Sci 25:1270-1278. https://doi.org/10.1177/1933719117737851
  16. Kurimoto K, Yabuta Y, Hayashi K, Ohta H, Kiyonari H, Mitani T, Moritoki Y, Kohri K, Kimura H, Yamamoto T, Katou Y, Shirahige K, Saitou M (2015) Quantitative dynamics of chromatin remodeling during germ cell specification from mouse embryonic stem cells. Cell Stem Cell 16:517-532. https://doi.org/10.1016/j.stem.2015.03.002
  17. Lang SH, Stark M, Collins A, Paul AB, Stower MJ, Maitland NJ (2001) Experimental prostate epithelial morphogenesis in response to stroma and three dimensional matrigel culture. Cell Growth Differ 12:631-640.
  18. Lei L, Zhang H, Jin S, Wang F, Fu M, Wang H, Xia G (2006) Stage-specific germ-somatic cell interaction directs the primordial folliculogenesis in mouse fetal ovaries. J Cell Physiol 208:640-647. https://doi.org/10.1002/jcp.20702
  19. Morohaku K, Tanimoto R, Sasaki K, Kawahara-Miki R, Kono T, Hayashi K, Hirao Y, Obata Y (2016) Complete in vitro generation of fertile oocytes from mouse primordial germ cells. Proc Natl Acad Sci USA 113:9021-9026. https://doi.org/10.1073/pnas.1603817113
  20. Murakami K, Gunesdogan U, Zylicz JJ, Tang WWC, Sengupta R, Kobayashi T, Kim S, Butler R, Dietmann S, Surani MA (2016) NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers. Nature 529:403-407. https://doi.org/10.1038/nature16480
  21. Nakaki F, Hayashi K, Ohta H, Kurimoto K, Yabuta Y, Saitou M (2013) Induction of mouse germ-cell fate by transcription factors in vitro. Nature 501:222-226. https://doi.org/10.1038/nature12417
  22. Noce T, Okamoto-Ito S, Tsunekawa N (2001) Vasa homolog genes in mammalian germ cell development. Cell Struct Funct 26:131-136. https://doi.org/10.1247/csf.26.131
  23. Okamura D, Tokitake Y, Niwa H, Matsui Y (2008) Requirement of Oct3/4 function for germ cell specification. Dev Biol 317:576-584. https://doi.org/10.1016/j.ydbio.2008.03.002
  24. Pepling ME, de Cuevas M, Spradling AC (1999) Germline cysts: A conserved phase of germ cell development? Trends Cell Biol 9:257-262. https://doi.org/10.1016/S0962-8924(99)01594-9
  25. Pierzchalska M, Grabacka M, Michalik M, Zyla K, Pierzchalski P (2012) Prostaglandin E2 supports growth of chicken embryo intestinal organoids in Matrigel matrix. Biotechniques 52:307-315. https://doi.org/10.2144/0000113851
  26. Pisarska MD, Barlow G, Kuo FT (2011) Minireview: Roles of the forkhead transcription factor FOXL2 in granulosa cell biology and pathology. Endocrinology 152:1199-1208. https://doi.org/10.1210/en.2010-1041
  27. Pushpa K, Kumar GA, Subramaniam K (2017) Translational control of germ cell decisions. In: Arur S (ed), Results and Problems in Cell Differentiation. Springer, Cham, pp 175-200.
  28. Sabour D, Arauzo-Bravo MJ, Hubner K, Ko K, Greber B, Gentile L, Stehling M, Scholer HR (2011) Identification of genes specific to mouse primordial germ cells through dynamic global gene expression. Hum Mol Genet 20:115-125. https://doi.org/10.1093/hmg/ddq450
  29. Saitou M, Barton SC, Surani MA (2002) A molecular programme for the specification of germ cell fate in mice. Nature 418:293-300. https://doi.org/10.1038/nature00927
  30. Saitou M, Miyauchi H (2016) Gametogenesis from pluripotent stem cells. Cell Stem Cell 18:721-735. https://doi.org/10.1016/j.stem.2016.05.001
  31. Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K, Ohta H, Moritoki Y, Iwatani C, Tsuchiya H, Nakamura S, Sekiguchi K, Sakuma T, Yamamoto T, Mori T, Woltjen K, Nakagawa M, Yamamoto T, Takahashi K, Yamanaka S, Saitou M (2015) Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 17:178-194. https://doi.org/10.1016/j.stem.2015.06.014
  32. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861-872. https://doi.org/10.1016/j.cell.2007.11.019
  33. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676. https://doi.org/10.1016/j.cell.2006.07.024
  34. Tanaka SS, Nagamatsu G, Tokitake Y, Kasa M, Tam PPL, Matsui Y (2004) Regulation of expression of mouse interferon-induced transmembrane protein like gene-3, Ifitm3 (mil-1, fragilis), in germ cells. Dev Dyn 230:651-659. https://doi.org/10.1002/dvdy.20085
  35. Ventela S (2006) Cytoplasmic bridges as cell-cell channels of germ cells. In: Baluska F, Volkmann D, Barlow PW (eds), Cell-Cell Channels. Springer, New York, NY, pp 208-216.