• 제목/요약/키워드: In vitro Ruminal Degradation

검색결과 44건 처리시간 0.02초

사료에 대한 활성탄의 첨가가 in vitro 시험시의 발효성상 및 영양소 소실율에 미치는 영향 (Effects of Activated Charcoal on in vitro Ruminal Fermentation Characteristics and Nutrient Disappearances)

  • 이봉덕;이수기;이기동
    • 농업과학연구
    • /
    • 제26권2호
    • /
    • pp.25-32
    • /
    • 1999
  • 본 시험음 활성탄의 첨가가 사료의 반추위내 발효성상 건물 및 영양소 소실율 반추위내 가스 생산량에 미치는 영향을 조사하기 위하여 in vitro 조건에서 실시되었다. 활성탄의 첨가수준은 0.00 0.25 0.50 %의 3수준이었으며, 사료의 조농비율은 볏짚과 농후사료 비율을 8:2 6:4 4:6 및 2:8로 하였다. 그리고 처리간 유의성은 5% 수준에서 검정하였다. 시험 결과를 요약하면, 위액의 pH는 활성탄의 첨가 비율이 높아질수록 높아지는 경향을 나타냈으나 유의성은 인정되지 않았으며, 사료의 조농비율에 따른 영향은 8:2구가 다른 처리구보다 유의하게 높았다. 그리고 VFA molar %는 활성탄 첨가에 의하여 유의한 결과는 아니지만 $C_2$는 감소되고 $C_3$는 증가되는 경향을 나타냈다. 또한 조사료비율이 증가될 수록 전술의 결과와는 상반된 현상을 보였다. $C_2/C_3$ 비율도 활성탄의 첨가와 농후사료 비율의 증가에 의하여 감소되는 경향을 나타냈다. 건물 및 영양소 소실율에 있어서는 활성탄 첨가에 의하여 건물 조단백질 NDF ADF hemicellulose의 소실율이 증가하는 경향을 보였다. 그러나 조지방의 소실율은 일정한 경향을 나타내지 않았다. 조농비율에 의한 영향에 있어서는 농후사료의 비율이 증가할 수록 건물 및 영양소의 소실율이 유의하게 증가하였다. 그리고 반추위내 가스 생산량에 있어서는 활성탄 0.5% 첨가구가 0.25% 및 0.00%구에 비하여 감소하는 경향이었고, 조사료의 비율이 높을수록 많아지는 경향이었다. 위 결과에서 보듯이 활성탄은 가축의 생산성 향상에 유리한 조건을 제공하는 경향이 있지만, 이것을 좀 더 명확히 밝히기 위해서는 활성탄의 흡착능력 위내의 세균총에 대한 연구 및 많은 생체실험도 병행되어야 할 것으로 생각된다.

  • PDF

고농후사료에 대한 목탄 및 활성탄의 첨가 수준이 인공위내 소화율, 휘발성 지방산 및 개스 생산량에 미치는 영향 (Effects of Activated Carbon and Charcoal on in vitro Nutrient Disappearances and Ruminal Fermentation Characteristics)

  • 이수기;차상우;김선균
    • 농업과학연구
    • /
    • 제29권2호
    • /
    • pp.35-42
    • /
    • 2002
  • 본 시험은 목탄 및 활성탄의 첨가가 사료의 반추위내 pH 발효성상 건물 및 영양소 소실율 가스 생산량에 미치는 영향을 조사하기 위하여 in vitro 조건에서 실시되었다. 활성탄과 목탄의 첨가 수준은 0.50% 및 1.0%의 수준이었으며, 사료의 조농비율은 오차드 건초와 농후사료 비율을 2:8로 하였다. 그리고 처리간 유의성은 5% 수준에서 검정하였다. 시험 결과를 요약하면, 위액의 pH는 활성탄의 첨가로 유의하게 높아졌다. 그리고 암모니아태 질소는 활성탄 첨가에 의하여 유의하게 높아졌으며, 목탄첨가구는 무첨가구와 비교할 때 유의한 차이가 인정되지 않았다. 또한 VFA molar ratio에서는 전구간에 유의한 차이가 인정되지 않았으며, C2/C3 비율은 유의한 차이는 아니지만 활성탄구가 다소 낮아지는 경향을 나타내었다. 그러나 목탄 첨가구에서는 대조구와 유의한 차이가 인정되지 않았다. 건물 조단백질 조지방 NDF ADF 및 hemicellulose의 소실율은 활성탄 첨가에 의하여 유의하게 증가되는 경향을 나타냈다. 목탄첨가구에 있어서는 0.5%구보다는 1.0%구가 유의하게 높은 성적을 나타내었다. 그러나 hemicellulose의 소실율은 전구간에 유의한 차이가 없었다. 가스 생산량에 미치는 영향은 활성탄 및 목탄 첨가구가 대조구에 비하여 유의하게 많은 양을 나타내었으며, 활성탄 첨가구와 목탄 첨가구를 비교하면 유의한 차이는 아니지만 활성탄 첨가구가 높은 경향을 나타내었다. 위 결과에서 보듯이 활성탄은 가축의 생산성 향상에 유리한 조건을 제공하는 경향이 있지만, 이것을 좀 더 명확히 밝히기 위해서는 활성탄의 흡착능력 위내의 세균총에 대한 연구 및 많은 생체실험도 병행되어야 할 것으로 생각된다.

  • PDF

Comparison of in vitro ruminal fermentation incubated with different levels of Korean corn grains with total mixed ration as a basal

  • Hamid, Muhammad Mahboob Ali;Park, Ha Young;Choi, Chang Weon
    • 농업과학연구
    • /
    • 제45권3호
    • /
    • pp.419-427
    • /
    • 2018
  • The present study was conducted to investigate the effect of different levels of Korean corn grain on in vitro ruminal fermentation with total mixed ration (TMR) as a basal feed. Three ruminal cannulated Holstein steers (Body Weight $479{\pm}33.0kg$) were used as rumen fluid donors. Treatments for in vitro fermentation were TMR only (control, 3.0 g), TMR substituted partially with high level (HC, TMR 1.5 and corn 1.5 g), and with low level of Korean corn grain (LC, TMR 2.25 and corn 0.75 g), respectively. To measure in vitro ruminal pH, gas production, ammonia N and volatile fatty acids (VFA), the in vitro fermentation incubation was triplicated at $39^{\circ}C$, 120 rpm for 0, 1, 3, 6, 12, 24 and 48 h, respectively. Mean ruminal pH was significantly lower (p < 0.05) for HC than control. Changes in rumen pH was rather similar between the groups till 6 h after incubation, but the lowest pH for HC (pH 5.10) appeared at 48 h compared with control and LC. Total gas production was tended (p < 0.09) to be higher and ammonia N was significantly lower (p < 0.05) for HC than control and LC. Total VFA was higher (p < 0.05) for HC and LC than control but no differences appeared between HC and LC. Overall, the present data indicate that feeding different levels of Korean domestic corn grain may lead to high and sustainable starch degradation in the rumen.

Ruminal Protein Degradation Characteristics of Cell Mass from Lysine Production

  • Seo, S.;Kim, H.J.;Lee, S.Y.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권3호
    • /
    • pp.364-370
    • /
    • 2008
  • Chemical analysis and in vitro studies were conducted to investigate the nutritive value for ruminants of cell mass from lysine production (CMLP) which is a by-product of the lysine manufacturing process. Proximate analysis, protein fractionation, and in vitro protein degradation using protease from Streptomyces griseus and strained ruminal fluid were carried out to estimate ruminal protein degradability of CMLP with two reference feedstuffs-soybean meal (SBM) and fish meal (FM). Amino acid composition and pepsin-HCl degradability were also determined to evaluate postruminal availability. CMLP contained 67.8% crude protein with a major portion being soluble form (45.4% CP) which was composed of mainly ammonium nitrogen (81.8% soluble CP). The amount of nucleic acids was low (1.15% DM). The total amount of amino acids contained in CMLP was 40.60% DM, which was lower than SBM (47.69% DM) or FM (54.08% DM). CMLP was composed of mainly fraction A and fraction B2, while the protein fraction in SBM was mostly B2 and FM contained high proportions of B2 and B3 fractions. The proportion of B3 fraction, slowly degradable protein, in CP was the highest in fish meal (23.34%), followed by CMLP (7.68%) and SBM (1.46%). CMLP was degraded up to 51.40% at 18 h of incubation with Streptomyces protease, which was low compared to FM (55.23%) and SBM (83.01%). This may be due to the insoluble portion of CMLP protein being hardly degradable by the protease. The in vitro fermentation by strained ruminal fluid showed that the amount of soluble fraction was larger in CMLP (40.6%) than in SBM (17.8%). However, because the degradation rate constant of the potentially degradable fraction of CMLP (2.0%/h) was lower than that of SBM (5.8%/h), the effective ruminal protein degradability of CMLP (46.95%) was slightly lower than SBM (53.77%). Unavailable fraction in the rumen was higher in CMLP (34.0%) compared to SBM (8.8%). In vitro CP degradability of CMLP by pepsin was 80.37%, which was lower than SBM (94.42%) and FM (89.04%). The evaluation of protein degradability using different approaches indicated that soluble protein in CMLP may supply a large amount of ammonia in the rumen while insoluble protein can be by-passed from microbial attacks due to its low degradability. The results from this study suggest that CMLP can be used as a protein supplement to ruminants for supplying both non-protein nitrogen to rumen microbes and rumen undegradable protein to the host animal.

Silage Fermentative Quality and Characteristics of Anthocyanin Stability in Anthocyanin-rich Corn (Zea mays L.)

  • Hosoda, Kenji;Eruden, Bayaru;Matsuyama, Hiroki;Shioya, Shigeru
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권4호
    • /
    • pp.528-533
    • /
    • 2009
  • The fermentative quality and quantitative change in anthocyanin of anthocyanin-rich corn (Zea mays L.) during storage and in vitro ruminal fermentation were studied. The anthocyanin-rich corn silages in bag silo, drum silo and round bale had good fermentative qualities, such as low pH (5% DM) and butyric acid-free, and its quality was maintained for more than 370 d. The amount of anthocyanin in the anthocyanin-rich corn decreased after ensiling by about 45% (from 3.34 to 1.88 mg/g DM), but stayed constant after day 60. The in vitro incubation of the anthocyanin-rich corn with ruminal fluid revealed little degradation of anthocyanin. These results indicate that the anthocyanin had no negative effect on silage fermentation, and the anthocyanin-rich corn silage is utilizable for practical use as a feedstuff. Our results also demonstrate alteration of the anthocyanin content during storage, and show that anthocyanin-rich corn is a suitable antioxidant source for ruminants because of the high stability of the anthocyanin in ruminal fluid.

Chemical Composition, In vitro Gas Production, Ruminal Fermentation and Degradation Patterns of Diets by Grazing Steers in Native Range of North Mexico

  • Murillo, M.;Herrera, E.;Carrete, F.O.;Ruiz, O.;Serrato, J.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권10호
    • /
    • pp.1395-1403
    • /
    • 2012
  • The objective of the study was to quantify annual and seasonal differences in the chemical composition, in vitro gas production, in situ degradability and ruminal fermentation of grazing steers… diets. Diet samples were collected with four esophageal cannulated steers ($350{\pm}3$ kg BW); and four ruminally cannulated heifers ($342{\pm}1.5$ kg BW) were used to study the dry matter degradation and fermentation in rumen. Data were analyzed with repeated measurements split plot design. The crude protein, in vitro dry matter digestibility and metabolizable energy were higher during the first year of trial and in the summer (p<0.01). The values of calcium, phosphorus, magnesium, zinc and copper were higher in summer (p<0.05). The gas produced by the soluble and insoluble fractions, as well as the constant rate of gas production were greater in summer and fall (p<0.01). The ammonia nitrogen ($NH_3N$) and total volatile fatty acids concentrations in rumen, the soluble and degradable fractions, the constant rate of degradation and the effective degradability of DM and NDF were affected by year (p<0.05) and season (p<0.01). Our study provides new and useful knowledge for the formulation of protein, energetic and mineral supplements that grazing cattle need to improve their productive and reproductive performance.

Fermentation Characteristics, Tannin Contents and In vitro Ruminal Degradation of Green Tea and Black Tea By-products Ensiled at Different Temperatures

  • Kondo, Makoto;Hirano, Yoshiaki;Kita, Kazumi;Jayanegara, Anuraga;Yokota, Hiro-Omi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권7호
    • /
    • pp.937-945
    • /
    • 2014
  • Green and black tea by-products, obtained from ready-made tea industry, were ensiled at $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$. Green tea by-product silage (GTS) and black tea by-product silage (BTS) were opened at 5, 10, 45 days after ensiling. Fermentation characteristics and nutrient composition, including tannins, were monitored and the silages on day 45 were subjected to in vitro ruminal fermentation to assess anti-nutritive effects of tannins using polyethylene glycol (PEG) as a tannin-binding agent. Results showed that the GTS and BTS silages were stable and fermented slightly when ensiled at $10^{\circ}C$. The GTS stored at $20^{\circ}C$ and $30^{\circ}C$ showed rapid pH decline and high acetic acid concentration. The BTS was fermented gradually with moderate change of pH and acid concentration. Acetic acid was the main acid product of fermentation in both GTS and BTS. The contents of total extractable phenolics and total extractable tannins in both silages were unaffected by storage temperatures, but condensed tannins in GTS were less when stored at high temperature. The GTS showed no PEG response on in vitro gas production, and revealed only a small increase by PEG on $NH_3$-N concentration. Storage temperature of GTS did not affect the extent of PEG response to both gas production and $NH_3$-N concentration. On the other hand, addition of PEG on BTS markedly increased both the gas production and $NH_3$-N concentration at any ensiled temperature. It can be concluded that tannins in both GTS and BTS suppressed rumen fermentation, and tannins in GTS did more weakly than that in BTS. Ensiling temperature for both tea by-products did not affect the tannin's activity in the rumen.

Effects of Gamma Irradiation on Chemical Composition, Antinutritional Factors, Ruminal Degradation and In vitro Protein Digestibility of Full-fat Soybean

  • Taghinejad, M.;Nikkhah, A.;Sadeghi, A.A.;Raisali, G.;Chamani, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권4호
    • /
    • pp.534-541
    • /
    • 2009
  • The aim of this study was to evaluate the effects of gamma irradiation (${\gamma}$-irradiation) at doses of 15, 30 and 45 kGy on chemical composition, anti-nutritional factors, ruminal dry matter (DM) and crude protein (CP) degradibility, in vitro CP digestibility and to monitor the fate of true proteins of full-fat soybean (SB) in the rumen. Nylon bags of untreated or ${\gamma}$-irradiated SB were suspended in the rumens of three ruminally-fistulated bulls for up to 48 h and resulting data were fitted to a nonlinear degradation model to calculate degradation parameters of DM and CP. Proteins of untreated and treated SB bag residues were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Digestibility of rumen undegraded CP was estimated using the three-step in vitro procedure. The chemical composition of raw and irradiated soybeans was similar. Results showed that phytic acid in ${\gamma}$-irradiated SB at dose of 30 kGy was eliminated completely. The trypsin inhibitor activity of 15, 30 and 45 kGy ${\gamma}$-irradiated SB was decreased (p<0.01) by 18.4, 55.5 and 63.5%, respectively. From in sacco results, ${\gamma}$-irradiation decreased (p<0.05) the washout fractions of DM and CP at doses of 30 and 45 kGy, but increased (p<0.05) the potentially degradable fractions. Gamma irradiation at doses of 15, 30 and 45 kGy decreased (p<0.05) effective degradability of CP at a rumen outflow rate of 0.05 $h^{-1}$ by 4.4, 14.4 and 26.5%, respectively. On the contrary, digestibility of ruminally undegraded CP of irradiated SB at doses of 30 and 45 kGy was improved (p<0.05) by 12 and 28%, respectively. Electrophoretic analysis of untreated soybean proteins incubated in the rumen revealed that ${\beta}$-conglycinin subunits had disappeared at 2 h of incubation time, whereas the subunits of glycinin were more resistant to degradation until 16 h of incubation. From the SDS-PAGE patterns, acidic subunits of 15, 30 and 45 kGy ${\gamma}$-irradiated SB disappeared after 8, 8 and 16 h of incubation, respectively, while the basic subunits of glycinin were not degraded completely until 24, 48 and 48 h of incubation, respectively. It was concluded that ${\gamma}$-irradiated soybean proteins at doses higher than 15 kGy could be effectively protected from ruminal degradation.

In vitro Nutrient Digestibility, Gas Production and Tannin Metabolites of Acacia nilotica Pods in Goats

  • Barman, K.;Rai, S.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권1호
    • /
    • pp.59-65
    • /
    • 2008
  • Six total mixed rations (TMR) containing 0, 4, 6, 8, 10, 12% tannin (TMR I-VI), using Accacia nilotica pods as a source of tannin, were used to study the effect of Acacia tannin on in vitro nutrient digestibility and gas production in goats. This study also investigated the degraded products of Acacia nilotica tannin in goat rumen liquor. Degraded products of tannins were identified using high performance liquid chromatography (HPLC) at different hours of incubation. In vitro digestibility of dry matter (IVDMD) and organic matter (IVOMD) were similar in TMR II, and I, but declined (p<0.05) thereafter to a stable pattern until the concentration of tannin was raised to 10%. In vitro crude protein digestibility (IVCPD) decreased (p<0.05) with increased levels of tannins in the total mixed rations. Crude protein digestibility was much more affected than digestibility of dry matter and organic matter. In vitro gas production (IVGP) was also reduced (p<0.05) with increased levels of tannins in the TMR during the first 24 h of incubation and tended to increase (p>0.05) during 24-48 h of incubation. Gallic acid, phloroglucinol, resorcinol and catechin were identified at different hours of incubation. Phloroglucinol and catechin were the major end products of tannin degradation while gallate and resorcinol were produced in traces. It is inferred that in vitro nutrient digestibility was reduced by metabolites of Acacia nilotica tannins and ruminal microbes of goat were capable of withstanding up to 4% tannin of Acacia nilotica pods in the TMR without affecting in vitro nutrient digestibility.