• Title/Summary/Keyword: In situ 토양세정법

Search Result 7, Processing Time 0.009 seconds

Surfactant Enhanced In-Situ Soil Flushing Pilot Test for the Soil and Groundwater Remediation in an Oil Contaminated Site (계면활성제 원위치 토양 세정법을 이용한 유류 오염 지역 토양.지하수 정화 실증 시험)

  • 이민희;정상용;최상일;강동환;김민철
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.77-86
    • /
    • 2002
  • Surfactant enhanced in-situ soil flushing was performed to remediate the soil and groundwater at an oil contaminated site, where had been used as a military vehicle repair area for 40 years. A section from the contaminated site (4.5 m $\times$ 4.5 m $\times$ 6.0 m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average $K_d$ of 2.0$\times$$10^{-4}$cm/sec. Two percent of sorbitan monooleate (POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminated section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed on a gas-chromatography (GC) for TPH concentration in the effluent with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit (WWDL). The effluent TPH concentration from wells with only water flushing was below 10 ppm. However, the effluent concentration using surfactant solution flushing increased to 1751 ppm, which was more than 170 times compared with the concentration with only water flushing. Total 18.5 kg of oil (TPH) was removed from the soil and groundwater at the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. The removal efficiency of surfactant enhanced in-situ flushing was investigated at the real contaminated site in Korea. Results suggest that in-situ soil flushing could be a successful process to remediate contaminated sites distributed in Korea.

Study on the Combination of In-situ Chemical Oxidation Method by using Hydrogen Peroxide with the Air-sparging Method for Diesel Contaminated Soil and Groundwater (과산화수소를 이용한 현장원위치 화학적 산화법과 공기분사법(Air-sparging)을 연계한 디젤 오염 토양/지하수 동시 정화 실내 실험 연구)

  • Kim, Nam-Ho;Kim, In-Su;Choi, Ae-Jung;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.8-17
    • /
    • 2006
  • Laboratory scale experiments were performed to investigate the removal efficiency of the in-situ chemical oxidation method and the air-sparging method for diesel contaminated soil and groundwater. Two kinds of diesel contaminated soils (TPH concentration : 2,401 mg/kg and 9,551 mg/kg) and groundwater sampled at Busan railroad station were used for the experiments. For batch experiments of chemical oxidation by using 50% hydrogen peroxide solution, TPH concentration of soil decreased to 18% and 15% of initial TPH concentration. For continuous column experiments, more than 70% of initial TPH in soil was removed by using soil flushing with 20% hydrogen peroxide solution, suggesting that most of diesel in soil reacted with hydrogen peroxide and degraded into $CO_2$ or $H_2O$ gases. Batch experiment for the air-sparging method with artificially contaminated groundwater (TPH concentration : 810 mg/L) was performed to evaluate the removal efficiency of the air-sparging method and TPH concentration of groundwater decreased to lower than 5 mg/L (waste water discharge tolerance limit) within 72 hours of air-sparging. For box experiment with diesel contaminated real soil and groundwater, the removal efficiency of air-sparging was very low because of the residual diesel phase existed in soil medium, suggesting that the air-sparging method should be applied to remediate groundwater after the free phase of diesel in soil medium was removed. For the last time, the in-situ box experiment for a unit process mixed the chemical oxidation process with the air-sparging process was performed to remove diesel from soil and groundwater at a time. Soil flushing with 20% hydrogen peroxide solution was applied to diesel contaminated soils in box, and subsequently contaminated groundwater was purified by the air-sparging method. With 23 L of 20% hydrogen peroxide solution and 2,160 L of air-sparging, TPH concentration of soil decreased from 9,551 mg/kg to 390 mg/kg and TPH concentration of groundwater reduced to lower than 5 mg/L. Results suggested that the combination process of the in-situ hydrogen peroxide flushing and the air-sparging has a great possibility to simultaneously remediate fuel contaminated soil and groundwater.

Fundamental Study for Feasibility on Soil Flushing for TPHs-Contaminated Soil Treatment (유류오염토양 정화를 위한 토양세정기술의 적용성 기초연구)

  • Kang, Hui-Cheon;Kim, Joung-Dae;Han, Byeong-Gi;Seo, Seung-Won;Shin, Chul-Ho;Park, Joon-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.740-747
    • /
    • 2015
  • This research was performed to evaluate the feasibility of in situ soil flushing for TPH-contaminated soil remediation. It was conducted in batch test as fundamental research for in situ soil flushing. The 30% of initial TPH concentration was removed by shaking only in batch test. The removal efficiency of TPH in case of groundwater as surfactant dilution solution was approximate 2~6% lower than that of distilled water. Mixing ratio of soil to surfactant solution did not practically effect on the TPH removal efficiency. In the experiment of using single or mixed surfactant solution with 0.1~4.0 wt%, Tween-80, SWA-1503, SWA-1503+SDS showed averagely over 80%. It was determined that the optimum surfactant concentration was 0.1 wt% because there was no significant difference between concentrations of 0.1~4.0 wt%.

Evaluation of Soil Flushing Column Test for Oil-contaminated Soil Treatment (유류오염토양 처리를 위한 컬럼식 토양세정기술 평가)

  • Kang, Hui-Cheon;Han, Byeong-Gi;Kim, Joung-Dae;Seo, Seung-Won;Shin, Chul-Ho;Park, Joon-Seok
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.302-307
    • /
    • 2017
  • This study was conducted to evaluate the feasibility of in situ soil flushing for TPH-contaminated soil remediation with column test. The soil texture of the soil was sand and the initial TPH concentration was $9,369mg\; kg^{-1}$. 0.1% Tween-80 was selected as surfactant solution. And the acrylic and the glass syringe columns were used as reactors. In the acrylic column test, 35% of the initial TPH was removed in 1 PV of flushing and approximately 40% in 5 PV and finally 7 PV showed about 60%. The glass column test showed 3 ~ 12% higher removal efficiency than that of acrylic test until 5 PV of flushing. However, there was no difference in TPH removal efficiency when 7 PV of surfactant was finally flushed. Both of alum only and alum+polymer mixed surfactants showed also the best coagulation efficiency in $150mg\;L^{-1}$ of concentraion. When Tween 80 was newly dissolved in 0.1% to the recovered solution after the coagulation treatment, the removal efficiency was increased from 32.0% to 41.0% in comparison to the new 0.1% Tween 80 solution without reuse by coagulation treatment.

토양 세정법을 이용한 실제 유류 오염 토양 및 지하수 정화

  • 강현민;이민희;정상용;강동환
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.418-421
    • /
    • 2003
  • Surfactant enhanced in-situ soil flushing was peformed to remediate the soil and groundwater at an oil contaminated site, and the effluent solution was treated by the chemical treatment process including DAF(Dissolved Air Flotation). A section from the contaminated site(4.5m$\times$4.5m$\times$6.0m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average Hydraulic conductivity of 2.0$\times$10$^{-4}$ cm/sec. Two percent of sorbitan monooleate(POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminant section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed by GC(gas-chromatography) for TPH concentration with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit(WWDL). Total 18.5kg of oil (TPH) was removed from the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. Results suggest that in-situ soil flushing and chemical treatment process including DAF could be a successful process to remediate contaminated sites distributed in Korea.

  • PDF

A Field Study of Surfactant Enhanced In-Situ Remediation using Injection Wells and Recovery Trench at a Jet Oil Contaminated Site (항공유 오염 지역에서 주입정과 회수트렌치를 이용한 원위치 토양세정법 현장 적용)

  • Lee, Gyu-Sang;Kim, Yang-Bin;Jang, Jae-Sun;Um, Jae-Yeon;Song, Sung-Ho;Kim, Eul-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.1
    • /
    • pp.13-21
    • /
    • 2012
  • This study reports a surfactant-enhanced in-situ remediation treatment at a test site which is located in a hilly terrain. The leakage oils from a storage tank situated on the top of the hill contaminated soils and groundwater in the lower elevation. Sixteen vertical injection wells (11 m deep) were installed at the top of the hill to introduce 0.1-0.5 vol.% of non-ionic Tween-80 surfactant. The contaminated area that required remediation treatment was about $1,650\;m^2$. Two cycles of injecting surfactant solution followed by water were repeated over approximately 7.5 months: first cycle with 0.5 month of surfactant injection followed by 3 months of water injection, and second cycle with 1 month of surfactant followed by 3 months of water injection. The seasonal fluctuation in groundwater table was also considered in the selection of periods for surfactant and water injection. The results showed that the initial Total Petroleum Hydrocarbon (TPH) concentration of 1,041 mg/kg (maximum 3,605 mg/kg) was reduced significantly down to 76.6 mg/kg in average. After 2nd surfactant injection process finished, average TPH concentration of soils was reduced to 7.5% compared to initial concentration. Also, average BTEX concentration of soils was reduced to 10.8%. This resultes show that the surfactant enhanced in-situ remediation processes can be applicable to LNAPL contaminated site in field scale.

Study of Surfactant Enhanced Remediation Methods for Organic Pollutant(NAPL) Distributed over the Heterogeneous Medium (계면활성제를 이용한 불균질 매질에서 유기오염물(NAPL)의 정화효율에 관한 실험)

  • 서형기;이민희;정상용
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.51-59
    • /
    • 2001
  • Column and box tests were performed to investigate the removal efficiency of NAPL using the surfactant enhanced flushing In heterogeneous medium. Homogeneous Ottawa sand and heterogeneous soil were used to verify the increase of remediation efficiency for the surfactant enhanced flushing in column test. Box tests with two different heterogeneous sub-structure were performed to quantify the capability of the surfactant enhanced flushing as a remediation method to remove NAPL from the heterogeneous medium. Two different grain size sand layers were repeated in the box to simulate the heterogeneous layer formation and the modified fault structure was built to simulate the fault system in the box. O-xylene as a LNAPL and PCE as a DNAPL were used and oleamide as a non-ionic surfactant. The maximum NAPL effluent concentration with 1% oleamide flushing in the homogeneous column test increased about 460 times compared to that with only water flushing and about 250 times increased in the real soil column test. In heterogeneous medium, the maximum effluent concentration increased about 150 times in 1% oleamide flushing and most of NAPL were removed from the box within 8 pore volume flushing, suggesting that the removal efficiency increased very much compared to in only water flushing. Results investigated the capability of the surfactant enhanced remediation method to remove NAPL even in heterogeneous medium.

  • PDF