• Title/Summary/Keyword: In hover

Search Result 116, Processing Time 0.021 seconds

Assessment of Flight Control Performance based on the Ground Test Results of Smart UAV (스마트 무인기의 지상시험을 통한 비행제어 성능분석)

  • Kang, Young-Shin;Park, Bum-Jin;Yoo, Chang-Sun;Kim, Yu-Shin;Koo, Sam-Ok
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The tilt-rotor Smart UAV(Unmanned Air Vehicle) has been developed by KARI(Korea Aerospace Research Institute) for civil purposes. In order to prove the reliabilities of total system of Smart UAV, the series of ground tests were performed including system interface test, aircraft HILS(Hardware In the Loop Simulation) Test, ground power test, 4-DOF (Degrees of Freedom)rig test, and tethered hover test. Many unexpected problems occurred at each ground test. With clearing these problems, the total Smart UAV systems were matured and the airworthiness was proven enough. After complete of additional ground test proposed by FRRB(Flight Readiness Review Board), the first flight test will be performed in this year. This paper presents the procedures and the analysis results of the ground tests for the tilt-rotor Smart UAV.

Automatic Processing Techniques of Rotorcraft Flight Data Using Data Mining (회전익항공기 운동모델 개발을 위한 데이터마이닝을 이용한 비행데이터 자동 처리 기법)

  • Oh, Hyeju;Jo, Sungbeom;Choi, Keeyoung;Roh, Eun-Jung;Kang, Byung-Ryong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.823-832
    • /
    • 2018
  • In general, the fidelity of the aircraft dynamic model is verified by comparison with the flight test results of the target aircraft. Therefore, the reference flight data for performance comparisons must be extracted. This process requires a lot of time and manpower to extract useful data from the vast quantity of flight test data containing various noise for comparing fidelity. In particular, processing of flight data is complex because rotorcraft have high non-linearity characteristics such as coupling and wake interference effect and perform various maneuvers such as hover and backward flight. This study defines flight data processing criteria for rotorcraft and provides procedures and methods for automated processing of static and dynamic flight data using data mining techniques. Finally, the methods presented are validated using flight data.

Attitude Control of Quad-rotor by Improving the Reliability of Multi-Sensor System (다종 센서 융합의 신뢰성 향상을 통한 쿼드로터 자세 제어)

  • Yu, Dong Hyeon;Park, Jong Ho;Ryu, Ji Hyoung;Chong, Kil To
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.517-526
    • /
    • 2015
  • This paper presents the results of study for improving the reliability of quadrotor attitude control by applying a multi-sensor along with a data fusion algorithm. First, a mathematical model of the quadrotor dynamics was developed. Then, using the quadrotor mathematical model, simulations were performed using the improved reliability multi-sensor data as the inputs. From the simulation results, we designed a Gimbal-equipped quadrotor system. With the quadrotor in a hover state, we performed experiments according to the angle change of the user's specifications. We then calculated the attitude control data from the actual experimental data. Furthermore, with additional simulations, we verified the performance of the designed quadrotor attitude control system with multiple sensors.

Surface Pressure Measurement on a Rotor Blade using Fast-Responding PSP (고속압력감응페인트를 이용한 로터 블레이드 표면 압력 측정)

  • Kim, Kidong;Kwon, Kijung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • The present study was conducted by using fast-responding PSP technique to measure the surface pressure on a small-scale rotor blade in hover. Also, the study was performed to verify the accuracy and investigate its possibility of PSP application for rotor blade pressure measurement. Pulsed laser which has 532 nm wavelength was used as a light source. Lifetime measurement technique was applied. Also, the coated paint on a rotor blade was porous PSP which has faster response time than conventional PSP. The blades had NACA0012 airfoils. The length of rotor blade was 340 mm and chord was 40 mm with rectangular shape 1 set, and 4 sets had several tip sweepback angles. The measured results qualitatively showed that the upper surface pressure decreases with increasing the collective pitch angle. Quantitative pressure coefficients of PSP results were higher approximately 0.4 to 0.7 than the pressure tap data of the NASA experiment.

Trouble Shooting for Fully Automatic Flight Test of Small Scaled Tiltrotor UAV (축소형 틸트로터 무인기의 전자동 비행시험을 위한 문제해결과정)

  • Kang, Young-Shin;Park, Bum-Jin;Yoo, Chang-Sun;Koo, Sam-Ok;Lee, Jang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • The ground integration test of Smart UAV has been performed according to the flight test plan. The flight test of full scaled model will be performed followed by 4 DOF ground rig test and a tethered hover test. Smart UAV is the first indigenous tiltrotor aircraft which can fly with fast cruise speed and take off or land vertically. In order to prove the flight control law of Smart UAV, the 40% scaled airplane was developed and have been tested. During flight test of small scaled model, many unique and unexpected problems occurred. After clearing these problems, fully automatic flight test was performed successfully. The experiences about many trouble shooting and resolving the problems would be basic material to avoid the unexpected but similar flight test problems hidden behind of the full scaled Smart UAV. This paper presents the detailed procedures of trouble shootings to solve the unique problems which occurred during the flight test of small scaled tiltrotor UAV.

  • PDF

Design of Control System for Organic Flight Array based on Back-stepping Controller (Backstepping 기법을 이용한 유기적 비행 어레이의 제어시스템 설계)

  • Oh, Bokyoung;Jeong, Junho;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.711-723
    • /
    • 2017
  • This paper proposes a flight control system for an organic flight array(OFA) which has a new configuration to consist of multi modularized ducted-fan unmanned aerial vehicles (UAVs). The OFA is able to apply to various missions such as indoor reconnaissance, communication relay, and radar jamming by using capability of hover flight. The OFA has a distinguished advantage due to reconfigurable structure to assemble or separate with respect to its missions or operational conditions. A dynamic modelling of the OFA is derived based on equations of motion of the single ducted-fan modules. In order to apply nonlinear control method, an affine system of attitude dynamics is derived. Moreover, the control system is composed of a back-stepping controller for attitude control and a PID controller for position control. Then the performance of the proposed controller is verified via a numerical simulation under wind disturbance.

Velocity Profile Optimization of Flapping Wing Micro Air Vehicle (초소형 날갯짓 비행체의 최적 날갯짓 속도 분포 연구)

  • Cho, Sungyu;Lee, Junhee;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.837-847
    • /
    • 2020
  • A velocity profile for flapping flight is optimized to increase the power efficiency of 20g weighted flapping wing micro air vehicle in hover. The experimental optimization of flapping velocity profile is carried out with a real sized flapper, and various velocity profiles are realized by non-circular gear. Kriging with noise is adopted as a meta model of the profile optimization to reflect the data noise by uncertainty. The optimization results confirm that the flapping efficiency (thrust-to-power ratio) is substantially improved (11.3%) through the elastic deformation that carries the angular kinetic energy from previous stroke.

Aerodynamic Optimization of Helicopter Blade Planform (I): Design Optimization Techniques (헬리콥터 블레이드 플랜폼 공력 최적설계(I): 최적설계 기법)

  • Kim, Chang-Joo;Park, Soo-Hyung;O, Seon-Gu;Kim, Seung-Ho;Jeong, Gi-Hun;Kim, Seung-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1049-1059
    • /
    • 2010
  • This paper treats the aerodynamic optimization of the blade planform for helicopters. The blade shapes, which should be determined during the threedimensional aerodynamic configuration design step, are defined and are parameterized using the B$\acute{e}$zier curves. This research focuses on the design approaches generally adopted by industries and or research institutes using their own experiences and know-hows for the parameterization and for the definition of design constraints. The hover figure of merit and the equivalent lift-to-drag ratio for the forward flight are used to define the objective function. The resultant nonlinear programming (NLP) problem is solved using the sequential quadratic programming (SQP) method. The applications show the present method can design the important planform shapes such as the airfoil distribution, twist and chord variations in the efficient manner.

Development of Interactive Signage using Floating Hologram (플로팅 홀로그램을 이용한 인터랙티브 사이니지 개발)

  • Kim, Dong-Jing;Jeong, Dong Hyo;Kim, Tae-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.4
    • /
    • pp.180-185
    • /
    • 2018
  • We have developed an interactive signage system based on floating hologram by combining hologram technology and ICT technology, which can be competitive to small businesses that have excellent products and services. The developed interactive signage system can be used for publicity and marketing of small business owners at low cost, introducing menus with 3D hologram images, and providing various contents responding to user's hand movements. The developed system is able to detect 10 finger movements at a rate of 290 frames per second in a range of 60cm and a range of 150 degrees. We also confirmed that the virtual touch function operates normally by dividing the user's motion recognition into the hover zone and the touch zone by the physical motion experiment of the leap motion object.

Effects of Milk Replacer and Ambient Temperature on Growth Performance of 14-Day-Old Early-Weaned Pigs

  • Heo, K.N.;Odle, J.;Oliver, W.;Kim, J.H.;Han, In K.;Jones, E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.908-913
    • /
    • 1999
  • This experiment was conducted in three trials to evaluate optimal ambient temperature for a novel milk replacer feeding system designed for early-weaned pigs, compared to commercial dry diets fed within a conventional hot nursery. A total of 165 PIC genotype pigs were weaned at $13.89{\pm}0.7$ days of age and allotted to one of two dietary treatments in three trials based on weight and litter origin. Each trial consisted of pigs fed dry diets (DD) and pigs fed milk replacer (MR) which was offered in one of 3 different ambient temperatures. Pigs fed milk replacer were housed in a specialized nursery building in which one half of each pen contained an enclosed hover that was thermostatically maintained at $32^{\circ}C$ while the exterior ambient temperature (where milk was fed) was set at either 17 (trial 1), 24 (trial 2) or $32^{\circ}C$ (trial 3). Pigs fed dry diets with the conventional nursery were maintained at $30^{\circ}C$ for each trial. From d 21 to d 49, all pigs were fed DD within a standardized hot nursery environment. During the first week (d 14-21), pigs fed MR showed increased ADG from 214% to 228% over control pigs fed DD (p<0.001), regardless of ambient temperature. As ambient temperature was increased from 17 to 24 to $32^{\circ}C$, ADG of MR-fed pigs was increased by 214%, 220% and 228% over those of pigs fed DD, respectively. ADFIs of MR-fed pigs at $17^{\circ}C$, $24^{\circ}C$, and $32^{\circ}C$ compared with pigs fed DD were increased by 108%, 139% and 164% from d 14 to d 21, respectively. Fed efficiency (G/F) of MR-fed pigs at $17^{\circ}C$, $24^{\circ}C$, and $32^{\circ}C$ compared with pigs fed DD were 199%, 162% and 139% of those of pigs fed DD, respectively. As ambient temperature increased, diarrhea scores showed a slight tendency to increase. The advantage of MR feeding was greater when the ambient temperature was higher, but G/F was impaired with increased ambient temperature. We conclude that ambient temperature within the specialized nursery influenced behavior, MR feed intake, and probably piglet energy expenditure. There were no differences between MR-fed and DD-fed pigs for ADG, ADFI and G/F in the subsequent growth period (d 21 to d 49, p>0.05). Maximal advantage of MR feeding was obtained at the intermediate ($24^{\circ}C$) ambient temperature during the overall period (p<0.05). Results from this experiment indicate that a milk replacer feeding system utilized in the early postweaning period can maximize pig growth performance, and that ADG, ADFI and G/F were affected by different ambient temperatures within MR-fed pigs. The high or low temperatures could not support the maximal growth of pigs fed MR.