• Title/Summary/Keyword: In densification

Search Result 817, Processing Time 0.027 seconds

Sintering and Microwave Dielectric Properties of $ZnWO_4$ ($ZnWO_4$ 소결특성 및 고주파 유전특성)

  • Lee, Kyoung-Ho;Kim, Yong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with repsect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, $ZnWO_4$ was turned out the suitable LTCC material. $ZnWO_4$ can be sintered up to 98% of full density at $1050^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and $-70ppm/^{\circ}C$, respectively. In order to modify the dielectric properties and densification temperature, $B_{2}O_{3}$ and $V_{2}O_{5}$ were added to $ZnWO_4$. 40 mol% $B_{2}O_{3}$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to $-7.6ppm/^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of $V_{2}O_{5}$ in $ZnWO_{4}-B_{2}O_{3}$ system enhanced liquid phase sintering. 0.1 wt% $V_{2}O_{5}$ addition to the $0.6ZnWO_{4}-0.4B_{2}O_{3}$ system, reduced the sintering temperature down to $950^{\circ}C$. Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and $-21.6ppm/^{\circ}C$, respectively.

  • PDF

Analysis of Vulnerability of Emergency Transport Service for Flooded Area (침수피해지역의 응급이송서비스 취약성 분석)

  • Lee, Yoon-Ha;Hong, Won-Hwa;Lee, Ji-Soo;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.122-130
    • /
    • 2018
  • Recent urbanization, population densification, and the impact of global climate change are causing disasters to become larger and more complex. Meanwhile, in Korea, there is an emphasis on preventing, restoring, and recovering from disasters. However, disaster medical care, which is absolutely necessary to maintain life in a disaster, is being ignored. Therefore, in this study, we selected Seoul as the study area where flood damage is frequent and underground housing is densely populated. Assuming underground housing in the immersion history area as the emergency patient site, transfer distance and transfer time were analyzed. This study considered both accessibility to emergency medical facilities and disaster sites and accessibility from emergency services to disaster sites. Therefore, it seems to be meaningful as basic data for the improvement of emergency medical services.

A study on the sintering and Dielectric Characteristics of Low Temperature Sinterable $SiO_2-TiO_2-Bi_2O_3-RO$ System (RO:BaO-CaO-SrO) Glass/Ceramic Dielectrics as a Function of $AI_2O_3$ Content (저온 소성용 $SiO_2-TiO_2-Bi_2O_3-RO$계 (RO;BaO-CaO-SrO) Glass/Ceramic 유전체의 $AI_2O_3$ 함량에 따른 소결 및 유전 특성의 변화)

  • Yun, Jang-Seok;Lee, In-Gyu;Lim, Uk;Cho, Hyun-Min;Park, Chong-Chol
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.12
    • /
    • pp.1350-1355
    • /
    • 1999
  • Sintering characteristics and dielectric properties of low temperature sinterable Glass/Ceramic dielectric materials were investigated. The dielectric materials which were developed for microwave frequency applications consist of SiO2-TiO2-Bi2O3-RO system(RO:BaO-CaO-SrO) crystallizable glass and Al2O3 as a ceramic filler. Sintering experiments showed that no more densification occurred above 80$0^{\circ}C$ and bulk density and shrinkage depended on Al2O3 content only. Results of dielectric measurements showed that $\varepsilon$r Q$\times$f and $\tau$f of the material containing 30wt% Al2O3 were 17.3, 600 and +23 ppm respectively. Those values for 45 and 60wt% Al2O3 samples were 11.6, 1400, +0.7 ppm and 7.2, 2000, -8.5 ppm, repectively. The results clearly showed that the Glas/Ceramic materials of present experiment decreased in $\varepsilon$r and increased in $\times$f value and changed from positive to negative value in $\tau$f value with the increasement of Al2O3 content.

  • PDF

Removal of Interface State Density of SiO2/Si Structure by Nitric Acid Oxidation Method (질산산화법을 이용한 SiO2/Si 구조의 계면결함 제거)

  • Choi, Jaeyoung;Kim, Doyeon;Kim, Woo-Byoung
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.118-123
    • /
    • 2018
  • 5 nm-thick $SiO_2$ layers formed by plasma-enhanced chemical vapor deposition (PECVD) are densified to improve the electrical and interface properties by using nitric acid oxidation of Si (NAOS) method at a low temperature of $121^{\circ}C$. The physical and electrical properties are clearly investigated according to NAOS times and post-metallization annealing (PMA) at $250^{\circ}C$ for 10 min in 5 vol% hydrogen atmosphere. The leakage current density is significantly decreased about three orders of magnitude from $3.110{\times}10^{-5}A/cm^2$ after NAOS 5 hours with PMA treatment, although the $SiO_2$ layers are not changed. These dramatically decreases of leakage current density are resulted from improvement of the interface properties. Concentration of suboxide species ($Si^{1+}$, $Si^{2+}$ and $Si^{3+}$) in $SiO_x$ transition layers as well as the interface state density ($D_{it}$) in $SiO_2/Si$ interface region are critically decreased about 1/3 and one order of magnitude, respectively. The decrease in leakage current density is attributed to improvement of interface properties though chemical method of NAOS with PMA treatment which can perform the oxidation and remove the OH species and dangling bond.

Preparation and Sintering Characteristics of Gd-Doped CeO2 Powder by Oxalate Co-Precipitation (옥살산 공침법에 의한 Gd-Doped CeO2 분말의 합성 및 소결 특성)

  • Han, In-Dong;Lim, Kwang-Young;Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.666-672
    • /
    • 2006
  • GDC20($Ce_{0.8}Gd_{0.2}O_{1.9}$) powder was synthesized by oxalate co-precipitation and milling and its thermal decomposition, phase formation, and sinterability were investigated. As-prepared precipitates were non-crystalline due to the milling process and completely decomposed at 400$^{\circ}C$ The powder calcined at 800$^{\circ}C$ for 2 h contained fine p]sty particles with an average size of 0.69 $\mu$m. Attrition milling of the calcined powder for 2 h had a little milling effect, resulting in a slight decrease in the particle size to 0.45 $\mu$m. The milled powder consisted of small spherical primary particles and some large particles, which had been agglomerated during calcination. Due to the excellent sinterability of the powder, sintering of the powder compacts for 4 h showed relative densities of 78.7% at 1000$^{\circ}C$ and 97.8% at 1300$^{\circ}C$, respectively. Densification was found to almost complete at temperature above 1200$^{\circ}C$ and a dense and homogeneous microstructure was obtained. A rapid grain growth occurred between 1200$^{\circ}C$ and 1300$^{\circ}C$. Grains in 0.1$\sim$0.5 $\mu$m sizes at 1200$^{\circ}C$ grew to 0.2$\sim$2 $\mu$m and their size distribution became broader at 1300$^{\circ}C$.

Densification Behavior of W-20wt.% Cu Composite Materials Fabricated by Mechanical Alloying Method (기계적합금화법에 의해 제조된 W-20wt.%Cu복합재의 치밀화 거동)

  • Kim, Bo-Su;An, In-Seop
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.627-632
    • /
    • 1995
  • W-Cu composites utilize the high electrical conductivity of copper and arc erosion resistance of tungsten to provide properties better suited to electrical contact applications than either tungsten or copper alone. W-Cu composite materials were milled in an attritor with an impeller speed of 300rpm for various milling times. The milled powders were compacted at 300MPa into cylinders, 16m in diameter, and approximately 4m high. Sintering was performed in dry H$_2$at temperature ranging from 1200$^{\circ}C$ to 1400$^{\circ}C$. Samples were sectioned and were polished for scanning electron microscopy (SEM) of microstructures. Homogeneous W-Cu composites were formed after 10 hours mechanical alloying and could be attained 99% density at 1330$^{\circ}C$. As mechanical alloying time increased, Fe-concentration was increased linearly. Intermetallic compound formation interupted the growth of W particles Increased hardness.

  • PDF

Sintering Behavior of Al2O3-15v/o ZrO2(+3m/o Y2O3) Ceramics Prepared by Precipitation Method (침전법으로 제조한 Al2O3-15v/o ZrO2(+3m/o Y2O3)계 세라믹스의 소결거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.423-437
    • /
    • 1989
  • Al2O3/ZrO2 composites were prepared by precipitation method using Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O as starting materials and NH4OH as a precipitation agent. Al2O3/ZrO2 composites(series A) were prepared by mixing Al2O3 powder obtained by single precipitation method with ZrO2(+3m/o Y2O3) powder obtained by co-predipitation method. Al2O3/ZrO2 composites (series B) were prepared by co-precipitation method using the three starting materials. In all cases, the composition was controlled as Al2O3-15v/o ZrO2(+3m/o Y2O3). The composites of series A showed higher final relative densities than those of series B and tetagonal ZrO2 in all cases was retained to about 95% at room temperature. ZrO2 particles were coalesced more rapidly in grain boundary of Al2O3 than within Al2O3 grain. ZrO2 particles were located at 3-and 4-grain junction of Al2O3 and limited the grain growth of Al2O3. It was observed that MgO contributed to densification of Al2O3 but limited grain growth of Al2O3 by MgO was not remarkable. In all Al2O3/ZrO2 composites, exaggerated grain growth of Al2O3 was not observed and Al2O3/ZrO2 composites were found to have homogeneous microstructures.

  • PDF

Sintering and Microwave Dielectric Properties of $ZnWO_4$ ($ZnWO_4$ 소결특성 및 고주파 유전특성)

  • 이경호;김용철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with respect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, ZnWO$_4$ was turned out the suitable LTCC material. ZnWO$_4$ can be sintered up to 98% of full density at 105$0^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and -70ppm/$^{\circ}C$, respectively In order to modify the dielectric properties and densification temperature, B$_2$O$_3$ and V$_2$O$_{5}$ were added to ZnWO$_4$. 40 mol% B$_2$O$_3$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to -7.6ppm/$^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of V$_2$O$_{5}$ in ZnWO$_4$-B$_2$O$_3$ system enhanced liquid phase sintering. 0.lwt% V$_2$O$_{5}$ addition to the 0.6ZnWO$_4$-0.4B$_2$O$_3$ system, reduced the sintering temperature down to 95$0^{\circ}C$ Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and -21.6ppm/$^{\circ}C$ respectively.ively.

  • PDF

Mechanical Properties and Fabrication of Nanostructured 2MoSi2-SiC by Pulsed Current Activated Combustion Synthesis (펄스 전류 활성 연소합성에 의한 나노구조의 2MoSi2-SIC제조 및 기계적 성질)

  • Shon, In-Jin;Kim, Dong-Ki;Jeong, In-Kyoon;Doh, Jung-Mann;Yoon, Jin-Kook;Ko, In-Yong
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.245-250
    • /
    • 2007
  • Dense nanostructured $2MoSi_{2}-SiC$ composites were synthesized by the pulsed current activated combustion synthesis (PCACS) method within 3 minutes in one step from mechanically activated powders of $Mo_{2}C$ and 5Si. Simultaneous combustion synthesis and densification were accomplished under the combined effects of a pulsed current and mechanical pressure. Highly dense $2MoSi_{2}-SiC$ with relative density of up to 96% was produced under simultaneous application of a 60 MPa pressure and the pulsed current. The average grain size of $MoSi_{2}$ and SiC were about 120 nm and 90 nm, respectively. The hardness and fracture toughness values obtained were 1350 $kg/mm^{2}$ and 4 $MPa{\cdot}m^{1/2}$, respectively.

MD simulation of structural change of polyethylene induced by high energy ion bombardment

  • Kim, Chan-Soo;Ahmed, Sk. Faruque;Moon, Myoung-Woon;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.358-358
    • /
    • 2010
  • Ion beam bombardment at low energy forms nanosize patterns such as ripples, dots or wrinkles on the surface of polymers in ambient temperature and pressure. It has been known that the ion beam can alter the polymer surface that induces skins stiffer or the density higher by higher compressive stress or strain energies associated with chain scissions and crosslinks of the polymer. Atomic scale structure evolution in polymers is essential to understand a stress generation mechanism during the ion beam bombardment, which governs the nanoscale surface structure evolution. In this work, Molecular Dynamics (MD) simulations are employed to characterize the phenomenon occurred in bombardment between the ion beam and polymers that forms nanosize patterns. We investigate the structure evolution of Low Density Polyethylene (LDPE) at 300 K as the polymer is bombarded with Argon ions having various kinetic energies ranging from 100 eV to 1 KeV with 50 eV intervals having the fluence of $1.45\;{\times}\;1014 #/cm2$. These simulations use the Reactive Force Field (ReaxFF), which can mimic chemical covalent bonds and includes van der Waals potentials for describing the intermolecular interactions. The results show the details of the structural evolution of LDPE by the low energy Ar ion bombardment. Analyses through kinetic and potential energy, number of crosslinks and chain scissions, level of local densification and motions of atoms support that the residual strain energies on the surface is strongly associated with the number of crosslinks or scissored chains. Also, we could find an optimal Ar ion beam energy to make crosslinks well.

  • PDF