• 제목/요약/키워드: In Situ Degradation

검색결과 231건 처리시간 0.024초

Thin Film Passivation Characteristics in OLED Using In-situ Passivation

  • Kim, Kwan-Do;Shin, Hoon-Kyu;Chang, Sang-Mok
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권2호
    • /
    • pp.93-97
    • /
    • 2012
  • In this study, the fabrication and the characteristic analyses of OLED using in-situ passivation are investigated. OLEDs represent a disadvantage in decreasing its life due to the degradation caused by the penetration of moisture and oxygen. After the fabrication of OLED, an in-situ passivation method for inorganic thin films is developed. A process that uses PECVD method which can apply a vapor deposition process at room temperature is also developed. Changes in the degradation and electric characteristics of OLEDs are also analyzed by applying $SiO_2$ and SiNx thin films to OLED as a passivation layer. By applying the fabricated thin film to OLEDs as a passivation layer, the moisture penetration in a single layer film is ensured below $1{\times}10^{-2}\;g/m^2.day$. This leads to the improvement of such degradation characteristics in the application of multilayer films.

The Dynamics of Protein Decomposition in Lakes of Different Trophic Status - Reflections on the Assessment of the Real Proteolytic Activity In Situ

  • Siuda, Waldemar;Kiersztyn, Bartosz;Chrost, Ryszard J.
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.897-904
    • /
    • 2007
  • The aim of this paper is to discuss the methodology of our investigation of the dynamics of protein degradation and the total in situ protealytic activity in meso/eutrophic, eutrophic, and hypereutrophic freshwater environments. Analysis of the kinetics and rates of enzymatic release of amino acids in water samples preserved with sodium azide allows determination of the concentrations of labile proteins $(C_{LAB})$, and their half-life time $(T_{1/2})$. Moreover, it gives more realistic information on resultant activity in situ $(V_{T1/2})$ of ecto- and extracellular proteases that are responsible for the biological degradation of these compounds. Although the results provided by the proposed method are general y well correlated with those obtained by classical procedures, they better characterize the dynamics of protein degradation processes, especially in eutrophic or hypereutrophic lakes. In these environments, processes of protein decomposition occur mainly on the particles and depend primarily on a metabolic activity of seston-attached bacteria. The method was tested in three lakes. The different degree of eutrophication of these lakes was clearly demonstrated by the measured real proteolytic pattern and confirmed by conventional trophic state determinants.

Evaluation of Mulberry (Morus alba) as Potential Feed Supplement for Ruminants: The Effect of Plant Maturity on In situ Disappearance and In vitro Intestinal Digestibility of Plant Fractions

  • Saddul, D.;Jelan, Z.A.;Liang, J.B.;Halim, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권11호
    • /
    • pp.1569-1574
    • /
    • 2005
  • The in situ nylon bag degradation and in vitro intestinal digestibility of dry matter (DM), and crude protein (CP) of mulberry (Morus alba) plant fractions was studied at four harvest stages, 3 (W3), 5 (W5), 7 (W7) and 9 (W9) weeks. Degradability of DM and CP of the whole plant and stem fractions declined significantly (p<0.01) with advancing plant maturity in the order W3>W5 and W7>W9 and W3>W5>W7>W9, respectively. The degradation of DM and CP of the leaf fraction was also influenced by plant maturity but no trend was observed. The degradation of DM and CP of the whole plant and leaves increased rapidly during the first 48 and 24 h of incubation, respectively, when maximum degradation was reached. In vitro intestinal digestibility of CP was more influenced by the residence time in the rumen than by plant maturity. This study showed that mulberry is suitable as a supplement, particularly to low-quality roughages, in providing a source of rapidly available nitrogen to the rumen microbes, hence improving the roughage degradability and intake.

Prediction of tensile strength degradation of corroded steel based on in-situ pitting evolution

  • Yun Zhao;Qi Guo;Zizhong Zhao;Xian Wu;Ying Xing
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.385-401
    • /
    • 2023
  • Steel is becoming increasingly popular due to its high strength, excellent ductility, great assembly performance, and recyclability. In reality, steel structures serving for a long time in atmospheric, industrial, and marine environments inevitably suffer from corrosion, which significantly decreases the durability and the service life with the exposure time. For the mechanical properties of corroded steel, experimental studies are mainly conducted. The existing numerical analyses only evaluate the mechanical properties based on corroded morphology at the isolated time-in-point, ignoring that this morphology varies continuously with corrosion time. To solve this problem, the relationships between pit depth expectation, standard deviation, and corrosion time are initially constructed based on a large amount of wet-dry cyclic accelerated test data. Successively, based on that, an in-situ pitting evolution method for evaluating the residual tensile strength of corroded steel is proposed. To verify the method, 20 repeated simulations of mass loss rates and mechanical properties are adopted against the test results. Then, numerical analyses are conducted on 135 models of corrosion pits with different aspect ratios and uneven corrosion degree on two corroded surfaces. Results show that the power function with exponents of 1.483 and 1.091 can well describe the increase in pit depth expectation and standard deviation with corrosion time, respectively. The effect of the commonly used pit aspect ratios of 0.10-0.25 on yield strength and ultimate strength is negligible. Besides, pit number ratio α equating to 0.6 is the critical value for the strength degradation. When α is less than 0.6, the pit number increases with α, accelerating the degradation of strength. Otherwise, the strength degradation is weakened. In addition, a power function model is adopted to characterize the degradation of yield strength and ultimate strength with corrosion time, which is revised by initial steel plate thickness.

방사광 X-선을 이용한 리튬이온전지 소재의 실시간 구조 분석 연구 (In situ Synchrotron X-ray Techniques for Structural Investigation of Electrode Materials for Li-ion Battery)

  • 한다슬;남경완
    • 세라미스트
    • /
    • 제22권4호
    • /
    • pp.402-416
    • /
    • 2019
  • The development of next-generation secondary batteries, including lithium-ion batteries (LIB), requires performance enhancements such as high energy/high power density, low cost, long life, and excellent safety. The discovery of new materials with such requirements is a challenging and time-consuming process with great difficulty. To pursue this challenging endeavor, it is pivotal to understand the structure and interface of electrode materials in a multiscale level at the atomic, molecular, macro-scale during charging / discharging. In this regard, various advanced material characterization tools, including the first-principle calculation, high-resolution electron microscopy, and synchrotron-based X-ray techniques, have been actively employed to understand the charge storage- and degradation-mechanisms of various electrode materials. In this article, we introduce and review recent advances in in-situ synchrotron-based x-ray techniques to study electrode materials for LIBs during thermal degradation and charging/discharging. We show that the fundamental understanding of the structure and interface of the battery materials gained through these advanced in-situ investigations provides valuable insight into designing next-generation electrode materials with significantly improved performance in terms of high energy/high power density, low cost, long life, and excellent safety.

재고미의 가공처리에 따른 in vitro, in situ 소화율 및 발효성상 평가 (Nutritional Evaluation of Rice with Different Processing Treatments on in vitro Rumen Fermentation Characteristics and in situ Degradation)

  • 양성재;정은상;김한빈;신택순;조병욱;조성근;김병우;서자겸
    • 한국유기농업학회지
    • /
    • 제26권2호
    • /
    • pp.281-296
    • /
    • 2018
  • 본 연구에서는 재고미의 사료가치 평가를 위해 무처리(Control)를 비롯한 Extruding, Roasting, Steam 처리구들의 영양소 성분분석, in vitro 소화율, in situ 소화율을 분석하였다. In vitro 실험에서 Extruding은 건물 소화율과 gas 발생량이 타 처리구에 비해 상대적으로 높았고, 가장 낮은 pH를 보였으며, 특히 배양 시간 초기에 소화가 신속히 발생하였다. $NH_3-N$ 함량은 배양 6 h 이후에서 Control이 Extruding, Roasting, Steam에 비해 유의적으로 높은 값을 보였고, 이는 가열처리된 단백질의 반추위 미생물의 이용성 저하에 따른 결과로 보이나, 더 정확한 결과를 위해 건물 소화율 분석뿐 아니라 CP 소화율 분석이 필요할 것으로 사료된다. VFA 발생량에서는 Extruding이 다른 처리구들에 비해 배양 6, 12 h에서 유의적으로 높았는데 이는 Extruding 처리구의 분해가 배양 초기에 주로 이어져 발생한 결과로 추정된다. 전분을 발효시키는 박테리아에 의해 높은 비율로 생산되는 propionate 증가 폭에서도 같은 경향을 보였다. In situ 소화율은 in vitro의 소화율과는 다소 차이가 있는 것으로 여겨지나, 이는 실험 방법에 대한 오차로 여겨질 수 있으며, ED(유효분해율)를 통해 in vitro 시험과 소화율의 경향성이 유사한 것을 알 수 있었다. 따라서 본 연구결과를 근거로 상대적으로 적합한 사료가공 처리방법은 무처리, Roasting 및 Steaming인 것으로 보여진다. 또한 무처리(control)의 경우 가공처리에 따른 추가비용 발생이 없으므로 경제적으로 유리할 것으로 판단된다. 재고미가 TMR의 원료로 이용될 수 있다면 국내에서 자급 가능한 사료원료로써 우수한 경제성을 지닐 수 있을 것이다.

In situ ruminal degradation characteristics of dry matter and crude protein from dried corn, high-protein corn, and wheat distillers grains

  • Lee, Y.H.;Ahmadi, F.;Choi, D.Y.;Kwak, W.S.
    • Journal of Animal Science and Technology
    • /
    • 제58권9호
    • /
    • pp.33.1-33.7
    • /
    • 2016
  • Background: The continuing growth of the ethanol industry has generated large amounts of various distillers grains co-products. These are characterized by a wide variation in chemical composition and ruminal degradability. Therefore, their precise formulation in the ruminant diet requires the systematic evaluation of their degradation profiles in the rumen. Methods: Three distillers grains plus soluble co-products (DDGS) namely, corn DDGS, high-protein corn DDGS (HP-DDGS), and wheat DDGS, were subjected to an in situ trial to determine the degradation kinetics of the dry matter (DM) and crude protein (CP). Soybean meal (SBM), a feed with highly degradable protein in the rumen, was included as the fourth feed. The four feeds were incubated in duplicate at each time point in the rumen of three ruminally cannulated Hanwoo cattle for 1, 2, 4, 6, 8, 12, 24, and 48 h. Results: Wheat DDGS had the highest filterable and soluble A fraction of its DM (37.2 %), but the lowest degradable B (49.5 %; P < 0.001) and an undegradable C fraction (13.3 %; P < 0.001). The filterable and soluble A fraction of CP was greatest with wheat DDGS, intermediate with corn DDGS, and lowest with HP-DDGS and SBM; however, the undegradable C fraction of CP was the greatest with HP-DDGS (41.2 %), intermediate with corn DDGS (2.7 %), and lowest with wheat DDGS and SMB (average 4.3 %). The degradation rate of degradable B fraction ($%\;h^{-1}$) was ranked from highest to lowest as follows for 1) DM: SBM (13.3), wheat DDGS (9.1), and corn DDGS and HP-DDGS (average 5.2); 2) CP: SBM (17.6), wheat DDGS (11.6), and corn DDGS and HP-DDGS (average 4.4). The in situ effective degradability of CP, assuming a passage rate of $0.06h^{-1}$, was the highest (P < 0.001) for SBM (73.9 %) and wheat DDGS (71.2 %), intermediate for corn DDGS (42.5 %), and the lowest for HP-DDGS (28.6 %), which suggests that corn DDGS and HP-DDGS are a good source of undegraded intake protein for ruminants. Conclusions: This study provided a comparative estimate of ruminal DM and CP degradation characteristics for three DDGS co-products and SBM, which might be useful for their inclusion in the diet according to the ruminally undegraded to degraded intake protein ratio.

Isolation of an Indigenous Imidacloprid-Degrading Bacterium and Imidacloprid Bioremediation Under Simulated In Situ and Ex Situ Conditions

  • Hu, Guiping;Zhao, Yan;Liu, Bo;Song, Fengqing;You, Minsheng
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권11호
    • /
    • pp.1617-1626
    • /
    • 2013
  • The Bacterial community structure and its complexity of the enrichment culture during the isolation and screening of imidacloprid-degrading strain were studied using denaturating gradient gel electrophoresis analysis. The dominant bacteria in the original tea rhizosphere soil were uncultured bacteria, Rhizobium sp., Sinorhizobium, Ochrobactrum sp., Alcaligenes, Bacillus sp., Bacterium, Klebsiella sp., and Ensifer adhaerens. The bacterial community structure was altered extensively and its complexity reduced during the enrichment process, and four culturable bacteria, Ochrobactrum sp., Rhizobium sp., Geobacillus stearothermophilus, and Alcaligenes faecalis, remained in the final enrichment. Only one indigenous strain, BCL-1, with imidacloprid-degrading potential, was isolated from the sixth enrichment culture. This isolate was a gram-negative rod-shaped bacterium and identified as the genus Ochrobactrum based on its morphological, physiological, and biochemical properties and its 16S rRNA gene sequence. The degradation test showed that approximately 67.67% of the imidacloprid (50 mg/l) was degraded within 48 h by strain BCL-1. The optimum conditions for degradation were a pH of 8 and $30^{\circ}C$. The simulation of imidacloprid bioremediation by strain BCL-1 in soil demonstrated that the best performance in situ (tea soil) resulted in the degradation of 92.44% of the imidacloprid (100 mg/g) within 20 days, which was better than those observed in the ex situ simulations that were 64.66% (cabbage soil), 41.15% (potato soil), and 54.15% (tomato soil).

In situ Gel Forming Stereocomplex Composed of Four-Arm PEG-PDLA and PEG-PLLA Block Copolymers

  • Jun, Yeo-Jin;Park, Kyung-Min;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Seung-Jin
    • Macromolecular Research
    • /
    • 제16권8호
    • /
    • pp.704-710
    • /
    • 2008
  • Injectable hydrogels are quite promising materials due to their potential to minimize invasive implantation and this provides versatile fitness irrespective of the damaged regions and facilitates the incorporation of bioactive agents or cells. In situ gel formation through stereocomplex formation is a promising candidate for injectable hydrogels. In this paper, a new series of enantiomeric, four-arm, PEG-PLA block copolymers and their stereocomplexed hydrogels were prepared by bulk ring-opening polymerization of D-lactide and L-lactide, respectively, with stannous octoate as a catalyst. The prepared polymers were characterized by $^1H$ nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT IR) spectroscopy, gel permeation chromatography (GPC) and thermal gravitational analysis (TGA), confirming the tailored structure and chain lengths. The swelling and degradation behavior of the hydrogels formed from a selected copolymer series were observed in different concentrations. The degradation rate decreased with increasing polymer content in the solution. The rheological behavior indicated that the prepared hydrogel underwent in situ gelation and had favorable mechanical strength. In addition, its feasibility as an injectable scaffold was evaluated using a media dependence test for cell culture. A Tris solution was more favorable for in situ gel formation than PBS and DMEM solutions were. These results demonstrated the in situ formation of hydrogel through the construction of a stereocomplex with enantiomeric, 4-arm, PEG-PLA copolymers. Overall, enantiomeric, 4-arm, PEG-PLA copolymers are a new species of stereocomplexed hydrogels that are suitable for further research into injectable hydrogels.

Anthocyanin and proanthocyanidin contents, antioxidant activity, and in situ degradability of black and red rice grains

  • Hosoda, Kenji;Sasahara, Hideki;Matsushita, Kei;Tamura, Yasuaki;Miyaji, Makoto;Matsuyama, Hiroki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1213-1220
    • /
    • 2018
  • Objective: An experiment was conducted to assess the antioxidant contents and activities of colored rice grains and to evaluate their nutritive characteristics in terms of chemical composition and in situ ruminal degradation. Methods: Ten cultivars of colored rice grains (Oryza sativa L.) collected from several areas of Japan were studied, and control rice without pigment, maize, barley, and wheat grains were used as control grains. Their chemical compositions, pigment, polyphenol contents, total antioxidant capacity (TAC), and degradation characteristics were determined. Results: The starch contents of the colored rice grains were in the range of 73.5% to 79.6%, similar to that of the control rice grain. The black and red rice grains contained anthocyanin (maximum: $5,045.6{\mu}g/g$) and proanthocyanidin (maximum: $3,060.6{\mu}g/g$) at high concentrations as their principal pigments, respectively. There were significantly (p<0.05) positive relationships among the pigment contents, polyphenol content, and TAC values in the colored and control rice grains, indicating that the increase in pigment contents also contributed to the increased polyphenol content and TAC values in the colored rice grains. The dry matter and starch degradation characteristics, as represented by c (fractional degradation rate of slowly degradable fraction) and by the effective degradability, of the colored rice grains and the control rice grain were ranked as follows among commonly used grains: wheat>barley${\geq}rice$>maize. The colored rice grains also included the most-digestible starch, since their potential degradable fraction and actual degradability at 48 h incubation were almost 100%. Conclusion: Colored rice grains have high potential to be used as antioxidant sources in addition to starch sources in ruminants.