DOI QR코드

DOI QR Code

Thin Film Passivation Characteristics in OLED Using In-situ Passivation

  • Kim, Kwan-Do (Department of Nano Engineering, Dong-A University, Korea and School of Advanced Materials and System Engineering, Green Energy System Education Center, Kumoh National Institute of Technology) ;
  • Shin, Hoon-Kyu (National Center for Nanomaterials Technology, Pohang University of Science and Technology) ;
  • Chang, Sang-Mok (Department of Nano Engineering, Dong-A University, Korea and Department of Chemical Engineering, Dong-A University)
  • Received : 2011.12.28
  • Accepted : 2012.02.20
  • Published : 2012.04.25

Abstract

In this study, the fabrication and the characteristic analyses of OLED using in-situ passivation are investigated. OLEDs represent a disadvantage in decreasing its life due to the degradation caused by the penetration of moisture and oxygen. After the fabrication of OLED, an in-situ passivation method for inorganic thin films is developed. A process that uses PECVD method which can apply a vapor deposition process at room temperature is also developed. Changes in the degradation and electric characteristics of OLEDs are also analyzed by applying $SiO_2$ and SiNx thin films to OLED as a passivation layer. By applying the fabricated thin film to OLEDs as a passivation layer, the moisture penetration in a single layer film is ensured below $1{\times}10^{-2}\;g/m^2.day$. This leads to the improvement of such degradation characteristics in the application of multilayer films.

Keywords

References

  1. C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes", Appl. Phys. Lett., 51, 913, (1987) [DOI: 10.1063/1.98799].
  2. J. H. Seo, J. H. Kim, J. H. Seo, G. W. Hyung, J. H. Park, K. H. Lee, S. S. Yoon, Y. K. Kim, "Highly efficient white organic light-emitting diodes using two emitting materials for three primary colors (red, green, and blue)", Appl. Phys. Lett., 90, 203507 (2007) [DOI : 10.1063/1.2740191].
  3. Yiru Sun and Stephen R. Forrest, "High-efficiency white organic light emitting devices with three separate phosphorescent emission layers", Appl. Phys. Lett., 91, 263503, (2007) [DOI : 10.1063/1.2827178].
  4. Kiran T. Kamtekar, Andrew P. Monkman, and Martin R. Bryce, "Recent advances in white organic light-emitting materials and devices (WOLEDs)", Adv. Mater. 22, 572, (2010) [DOI : 10.1002/ adma.200902148].
  5. J. H. Seo, B. M. Seo, J. R. Kim, K. H. Lee, J. N. You, S. S. Yoon, Y. K. Kim, "Blue organic light-emitting diodes with efficient hostdopant energy level alignment", Current Applied Physics, Vol 11, S356, (2011) [DOI : 10.1016/j.cap.2011.03.059].
  6. P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. Mc- Carty, and M. E. Thompson, "Reliability and degradation of organic light emitting devices", Applied Physics Letters, Vol. 65, No. 23, 2923, (1994) [DOI : 10.1063/1.112532].
  7. H. Lifka, H. A. van Esch, J.J.W.M. Rosink, SID Symposium Digest, vol. 35, 1384, (2004) [DOI : 10.1889/1.1825767].
  8. J. S. Lewis and M. S. Weaver, "Thin-Film Permeation-Barrier Technology for Flexible Organic Light-Emitting Devices", IEEE J. Sel. Top. Quantum Electron. Vol. 10, No. 1, 45 (2004) [DOI : 10.1109/JSTQE.2004.824072].
  9. G. L. Graff, R. E. Williford, and P. E. Burrows, "Machanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation", Journal of Applied Physics, Vol. 96, No. 4, 1840 (2004) [DOI : 10.1063/1.1768610].
  10. H. Lin, L.Q. Xu, X. Chen, X.H. Wang, M. Sheng, F. Stubhan, K.H. Merkel, J. Wilde, "Moisture-resistant properties of SiNx films prepared by PECVD", Thin Solid Films, Vol. 333, 71 (1998) [DOI : 10.1016/S0040-6090(98)00812-8].
  11. Manju Rajestwaran et al., "Structural, thermal and spectral chracterization of the different crystalline forms of Alq3, an electroluminescent material in OLED technology", Polyhedron, 28, 835 (2009) [DOI : 10.1016/j.poly.2008.12.022].
  12. N.-C. Seong et al., "Organic light-emitting device using new distyrylarylene host materials", Synthetic Metals, 157, 421 (2007) [DOI : 10.1016/j.synthmet.2007.04.015].
  13. Zoran D. Popovic and Hany Aziz, "Reliability and Degradation of Small Molecule-Based Organic Light-Emitting Devices (OLEDs)", IEEE Journal on Selected Topics in Quantum Electronics, Vol. 8, No. 2 (2002) [DOI : 10.1109/2944.999191].
  14. Chan-Ching Chang, Ming-Ta Hsieh, and Jenn-Fang Chen, "Highly power efficient organic light-emitting diodes with a p-doping layer", Appl. Phys. Lett., 89, 253504 (2006) [DOI : 10.1063/1.2405856].
  15. M. Vogt, R. Hauptmann, "Plasma-deposited passivation layers for moisture and water protection", Surface and Coating Technology 74-75, 676 (1995) [DOI : 10.1016/0257-8972(95)08268-9].

Cited by

  1. Water vapor transmission rate property of SiN x thin films prepared by low temperature (<100 °C) linear plasma enhanced chemical vapor deposition vol.148, 2018, https://doi.org/10.1016/j.vacuum.2017.10.036
  2. Nonthermal Plasma Hybrid Process for Preparation of Organic Electroluminescence Fluoropolymer Film Devices vol.51, pp.3, 2015, https://doi.org/10.1109/TIA.2014.2365111
  3. High-performance thin-film encapsulation for organic light-emitting diodes vol.44, 2017, https://doi.org/10.1016/j.orgel.2017.02.009
  4. Multiaxial wavy top-emission organic light-emitting diodes on thermally prestrained elastomeric substrates vol.48, 2017, https://doi.org/10.1016/j.orgel.2017.06.019