• Title/Summary/Keyword: In Situ

Search Result 6,110, Processing Time 0.035 seconds

Behaviors of Soft Bangkok Clay behind Diaphragm Wall Under Unloading Compression Triaxial Test (삼축압축 하에서 지중연속벽 주변 방콕 연약 점토의 거동)

  • Le, Nghia Trong;Teparaksa, Wanchai;Mitachi, Toshiyuki;Kawaguchi, Takayuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.5-16
    • /
    • 2007
  • The simple linear elastic-perfectly plastic model with soil parameters $s_u,\;E_u$ and n of undrained condition is usually applied to predict the displacement of a constructed diaphragm wall(DW) on soft soils during excavation. However, the application of this soil model for finite element analysis could not interpret the continued increment of the lateral displacement of the DW for the large and deep excavation area both during the elapsed time without activity of excavation and after finishing excavation. To study the characteristic behaviors of soil behind the DW during the periods without excavation, a series of tests on soft Bangkok clay samples are simulated in the same manner as stress condition of soil elements happening behind diaphragm wall by triaxial tests. Three kinds of triaxial tests are carried out in this research: $K_0$ consolidated undrained compression($CK_0U_C$) and $K_0$ consolidated drained/undrained unloading compression with periodic decrement of horizontal pressure($CK_0DUC$ and $CK_0UUC$). The study shows that the shear strength of series $CK_0DUC$ tests is equal to the residual strength of $CK_0UC$ tests. The Young's modulus determined at each decrement step of the horizontal pressure of soil specimen on $CK_0DUC$ tests decreases with increase in the deviator stress. In addition, the slope of Critical State Line of both $CK_0UC$ and $CK_0DUC$ tests is equal. Moreover, the axial and radial strain rates of each decrement of horizontal pressure step of $CK_0DUC$ tests are established with the function of time, a slope of critical state line and a ratio of deviator and mean effective stress. This study shows that the results of the unloading compression triaxial tests can be used to predict the diaphragm wall deflection during excavation.

CD45RA+ Depleted Lymphocyte Infusion for Treatment of Refractory Cytomegalovirus Disease in Complete DiGeorge Syndrome: A Case Report

  • HyungJin Chin;Young Hye Ryu;Da Yun Kang;Hyun Jin Park;Kyung Taek Hong ;Jung Yoon Choi;Ki Wook Yun;Bongjin Lee;Hyoung Jin Kang;Eun Hwa Choi
    • Pediatric Infection and Vaccine
    • /
    • v.30 no.3
    • /
    • pp.173-179
    • /
    • 2023
  • Complete DiGeorge syndrome (cDGS) refers to DGS with profound T cell deficiency. Herein, we present the case of an infant with cDGS suffering from refractory cytomegalovirus (CMV) infection and who was treated with CD45RA+ depleted lymphocyte infusion. The patient was diagnosed with cDGS by fluorescence in situ hybridization which verified 22q11.2 deletion and as well as by the observed profound T cell deficiency (CD3+ T cells 69/μL, CD4+ T cells 7/μL). On the 45th day of age, CMV viremia was first detected with a plasma viral load (VL) of 120,000 IU/mL. Ganciclovir treatment effectively reduced VL post 56 days of treatment; however, VL subsequently rebounded. A CMV UL97 phosphotransferase M460V mutation conferring ganciclovir resistance emerged and foscarnet was incorporated. Despite this, high titers of CMV viremia (VL 2,820,000 IU/mL) and CMV retinitis were complicated. To restore T cell immunity and treat refractory CMV infection, CD45RA+ depleted CMV-specific lymphocytes from the patient's father were infused twice on the 196th and 207th days after birth. After receiving the second infusion, a decline in CMV VL was observed, with a decrease to 87,100 IU/mL by the tenth day following infusion, despite the failure in maintaining T cell increase. The patient died of Pneumocystis jirovecii pneumonia and Elizabethkingia meningoseptica sepsis on the 222nd day after birth. CD45RA+ depleted lymphocyte infusion may be a therapeutic option for refractory CMV disease in cDGS patients.

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments (오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가)

  • Dong Hyun Kim;Hyung Jun Park;Young Jun Bang;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.45-59
    • /
    • 2023
  • The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.

Seasonal Whole-plant Carbon Balance of Phyllospadix iwatensis on the Coast of the Korean Peninsula (한반도 연안에 분포하는 새우말의 탄소수지 계절적 변동)

  • SEUNG HYEON KIM;JONG-HYEOB KIM;HYEGWANG KIM;JIN WOO KU;KI YOUNG KIM;KUN-SEOP LEE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.1
    • /
    • pp.28-41
    • /
    • 2024
  • The carbon balance serves as a valuable indicator of a plant's physiological status under diverse environmental conditions. We investigated the photosynthetic and respiratory responses of the Asian surfgrass Phyllospadix iwatensis along the northeast coast of the Korean peninsula in response to changing water temperature (ranging from 5℃ to 30℃) to estimate the seasonal whole-plant carbon balance through a series of incubation experiments. The maximum gross photosynthetic rate (Pmax) showed a significant difference among the temperature treatments, while there was no significant difference in photosynthetic efficiency (α). The maximum gross photosynthetic rate of P. iwatensis reached its peaks at 20℃ treatment (101.65 μmol O2 g-1 DW h-1) but decreased rapidly at 30℃. The saturation irradiance (Ik), compensation irradiance (Ic), and respiration rate (R) of P. iwatensis exhibited significant differences among the temperature treatments. The saturation irradiance increased up to 20-25℃ (121.59-124.50 μmol photons m-2 s-1) and sharply decreased at 30℃. The compensation irradiance and respiration rate increased steadily with rising water temperature. The ratio of Pmax to R (Pmax:R ratio) was the highest at 5℃ but dramatically decreased at 30℃. The whole-plant carbon balance, calculated based on photosynthetic parameters, respiration rates, and biomass, exhibited distinct seasonal variation, increasing during winter and spring and decreasing during summer and fall, which is consistent with the highest in situ growth in spring and severely limited growth at the highest water temperature conditions. Phyllospadix iwatensis displayed a negative carbon balance during late summer, fall, and winter, but demonstrated a positive carbon balance during spring and early summer. Our findings suggest that the rising seawater temperatures associated with climate change may lead to significant alterations in the seagrass ecosystem functioning along the rocky shores of the Korean east coast.

Slipped Capital Femoral Epiphysis(SCFE) (대퇴골두 골단분리증의 치험례)

  • Dan, Jin-Myoung;Kim, Se-Dong
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.1
    • /
    • pp.245-261
    • /
    • 1997
  • Slipped capital femoral epiphysis(SCFE) is a disorder in which there is a gradual or acute disruption through the capital physeal plate. The physiolysis is through a widened zone of hypertrophy, which is weakened due to altered chondrocytic maturation and endochondral ossification. The cause or causes of SCFE remain uncertain. The association of obesity and adolescent age with growth rate are predisposing factors. The possibility that most patients with subclinical hormonal abnormality were proved. The goal of treatment of slipped capital femoral epiphysis is to restore the function of the hip and delay the development of degenerative osteoarthrosis by prevention of additional displacement of the epiphysis. We report 10 patients(12hips) with SCFE who were treated by surgical means and followed along for more than one year, at Yeungnam University Hospital, from 1989 to 1996. There were six boys and four girls. The average age at operation was 11.8 years. Seven cases occurred in the left hip, one case in the right and 2 cases had bilateral involvement, five cases had a history of minor trauma on affected hip. Among hormonally studied six patients, panhypopituitarism patient was one case; decreased testosterone, two; decreased growth hormone, two; and decreased thyroid hormone, one. According to clinical stage, two cases were the acute type; five cases, acute on chronic type; and three cases, chronic type. On the radiological grades of slipping, mild slippage were nine hips; moderate, one; and severe, two. The eleven hips were treated by pin fixation in situ, and one, by cuneiform osteotomy. On the average follow-up of 2.6 years, ten hips were excellent or good functional results, two hips were failure.

  • PDF

Evaluation of Construction Operation and Design Properties of CLSM for Corrugated Pipe in Underground (파형강관을 이용한 지하매설물용 뒤채움재 설계 및 시공성 평가)

  • Lee Kwan-Ho;Park Jae-Heon
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.63-74
    • /
    • 2006
  • During the construction of circular underground pipe, the non-proper compaction along the pipe and the decrease of compaction efficiency have been the main problems to induce the failure of underground pipe or facility. The use of CLSM (controlled low strength materials) should be one of the possible applications to overcome those problems. In this research, the full-scaled field test and the numeric analysis using PENTAGON-3D FEM program were carried out for three different cases on the change of backfill materials, including the common sand, the soil from construction site, and the CLSM. From the full-scaled test in field, the use of in-situ CLSM as backfill materials reduced the vertical and lateral deformation of the pipe, as well as the deformation of the ground surface. The main reason for reducing the deformation would be the characteristics of the CLSM, especially self-leveling and self-hardening properties. The measured earth pressure at the surround of the corrugated pipe using the CLSM backfills was the smaller than the other cases, and the absolute value was almost zero. Judging from the full-scaled field test and FEM analysis, the use of CLSM as backfill materials should be one of the best choices reducing the failure of the underground pipes.

  • PDF

Study on Development of Embedded Source Depth Assessment Method Using Gamma Spectrum Ratio (감마선 스펙트럼 비율을 이용한 매립 선원의 깊이 평가 방법론 개발 연구)

  • Kim, Jun-Ha;Cheong, Jea-Hak;Hong, Sang-Bum;Seo, Bum-Kyung;Lee, Byung Chae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.51-62
    • /
    • 2020
  • This study was conducted to develop a method for depth assessment of embedded sources using gamma-spectrum ratio and for the evaluation of field applicability. To this end, Peak to Compton and Peak to valley ratio changes were evaluated according to 137Cs, 60Co, 152Eu point source depth using HPGe detector and MCNP simulation. The effects of measurement distance of PTV and PTC methods were evaluated. Using the results, the source depth assessment equation using the PTC and PTV methods was derived based on the detection distance of 50 cm. In addition, the sensitivity of detection distance changes was assessed when using PTV and PTC methods, and error increased by 3 to 4 cm when detection distance decreased by 20 cm based on 50 cm. However, it was confirmed that if the detection distance was increased to 100 cm, the effects of detection distance were small. And PTV and PTC methods were compared with the two distance measurement method which evaluates the depth of source by the change of net peak counting rate according to the detection distance. As a result of source depth assessment, the PTV and PTC showed a maximum error of 1.87 cm and the two distance measurement method showed maximum error of 2.69 cm. The results of the experiment confirmed that the accuracy of the PTV and PTC methods was higher than two distance measurement. In addition, Sensitivity evaluation by horizontal position error of source has maximum error of less than 25.59 cm for the two distance measurement method. On the other hand, PTV and PTC method showed high accuracy with maximum error of less than 8.04 cm. In addition, the PTC method has lowest standard deviation for the same time measurement, which is expected to enable rapid measurement.

Applicability of Vegetation Index and SPAD Reading to Nondestructive Diagnosis of Rice Growth and Nitrogen Nutrition Status (식생지수와 SPAD를 이용한 벼 생육 및 질소영양상태의 비파괴적 진단 가능성 검토)

  • Kim Min-Ho;Shin Jin-Chul;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.6
    • /
    • pp.369-377
    • /
    • 2005
  • Precise application of topdressing nitrogen (N) fertilizer is indispensible for securing high yield and good quality of rice and minimizing N losses to the environment as well. For precise N management, growth and nitrogen nutrition status (NNS) should be diagnosed rapidly and accurately. The objective of the study was to evaluate the applicability of vegetation index (VI) calculated from hyperspectral canopy reflectance measurement and SPAD reading to nondestructive in situ diagnosis of growth and NNS of rice. Canopy reflectance, SPAD read­ing, growth parameters, and NNS characteristics were measured from various N treatments to evaluate the relationships among them for two cropping seasons from 2001 to 2002. The correlation coefficient of VIs with variables of growth and NNS increased positively as rice canopy became more closed. Regardless of growth stages, VIs had significantly high correlations with LAI, shoot dry weight (DW), shoot N content and nitrogen nutrition index (NNI). Those correlation coefficients increased steadily before heading stage as rice grew up. However, tiller number and leaf N concentration showed significantly high correlations with VIs only at and after panicle initiation stage (PIS). Among the VIs, RVIgreen had significantly higher correlation with the measured parameters than the other VIs: it showed correlation coefficients greater than 0.8 with leaf and shoot N concentration and DW, and much higher coefficients greater than 0.9 with LAI, shoot N content, and NNI. At LAI of below 2.5, VIs had non-significant or low correlations with the growth and NNS indicators due to the background effects. SPAD reading had significantly high correlation with leaf N concentration and NNI at each growth stage. In addition, it had significant correlations with variables of growth and NNS at PIS and booting stage, particularly, at booting stage. Though SPAD reading had a significantly high correlation value at a given growth stage in each year, it showed very weak relationship with variables of growth and NNS when pooled across growth stages and years. In conclusion, RVIgreen was found to be the most reliable VI to estimate the growth and NNS of rice around at PIS, but SPAD reading had much limitations.

Estimation of Paddy Rice Growth Increment by Using Spectral Reflectance Signature (분광반사특성을 이용한 벼의 생장량 추정)

  • 홍석영;이정택;임상규;정원교;조인상
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.83-94
    • /
    • 1998
  • To have a basic idea on the spectral reflectance signature in paddy rice canopy, we measured spectral reflectance from paddy rice canopy(Ilpumbyeo) using spectroradiometer (GER Inc. SFOV : 0.35~2.50 ${\mu}{\textrm}{m}$) in situ weekly or biweekly from transplanting to ripening stage. Spectral reflectance of the visible range (0.4~0.7 ${\mu}{\textrm}{m}$) was decreased to below 5% and then slightly increased again after heading stage in rice canopy. Meanwhile spectral reflectance of the near-infrared range (0.7~1.1 ${\mu}{\textrm}{m}$) was increased to 40~50% and then decreased a great deal after panicle initiation stage in rice canopy. Landsat TM equivalent band set ($\bar{p}$$_{TMi}$) was created by averaging spectral reflectance values to the real TM bands. Correlation analysis between the rice crop variables (LAI, total dry matter) and TM equivalent band set ($\bar{p}$$_{TMi}$) showed that LAI and total dry matter of rice were highly correlated with visible bands such as $\bar{p}$$_{TM1}$, $\bar{p}$$_{TM2}$, and $\bar{p}$$_{TM3}$. Ratio values ($\bar{p}$$_{TMi}$/$\bar{p}$$_{TMi}$) such as $\bar{p}$$_{TM4}$/$\bar{p}$$_{TM2}$ were also highly correlated with rice crop variables such as LAI and total dry matter.

Modeling and mapping fuel moisture content using equilibrium moisture content computed from weather data of the automatic mountain meteorology observation system (AMOS) (산악기상자료와 목재평형함수율에 기반한 산림연료습도 추정식 개발)

  • Lee, HoonTaek;WON, Myoung-Soo;YOON, Suk-Hee;JANG, Keun-Chang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.21-36
    • /
    • 2019
  • Dead fuel moisture content is a key variable in fire danger rating as it affects fire ignition and behavior. This study evaluates simple regression models estimating the moisture content of standardized 10-h fuel stick (10-h FMC) at three sites with different characteristics(urban and outside/inside the forest). Equilibrium moisture content (EMC) was used as an independent variable, and in-situ measured 10-h FMC was used as a dependent variable and validation data. 10-h FMC spatial distribution maps were created for dates with the most frequent fire occurrence during 2013-2018. Also, 10-h FMC values of the dates were analyzed to investigate under which 10-h FMC condition forest fire is likely to occur. As the results, fitted equations could explain considerable part of the variance in 10-h FMC (62~78%). Compared to the validation data, the models performed well with R2 ranged from 0.53 to 0.68, root mean squared error (RMSE) ranged from 2.52% to 3.43%, and bias ranged from -0.41% to 1.10%. When the 10-h FMC model fitted for one site was applied to the other sites, $R^2$ was maintained as the same while RMSE and bias increased up to 5.13% and 3.68%, respectively. The major deficiency of the 10-h FMC model was that it poorly caught the difference in the drying process after rainfall between 10-h FMC and EMC. From the analysis of 10-h FMC during the dates fire occurred, more than 70% of the fires occurred under a 10-h FMC condition of less than 10.5%. Overall, the present study suggested a simple model estimating 10-h FMC with acceptable performance. Applying the 10-h FMC model to the automatic mountain weather observation system was successfully tested to produce a national-scale 10-h FMC spatial distribution map. This data will be fundamental information for forest fire research, and will support the policy maker.