DOI QR코드

DOI QR Code

Study on Development of Embedded Source Depth Assessment Method Using Gamma Spectrum Ratio

감마선 스펙트럼 비율을 이용한 매립 선원의 깊이 평가 방법론 개발 연구

  • Received : 2019.10.09
  • Accepted : 2020.02.27
  • Published : 2020.03.30

Abstract

This study was conducted to develop a method for depth assessment of embedded sources using gamma-spectrum ratio and for the evaluation of field applicability. To this end, Peak to Compton and Peak to valley ratio changes were evaluated according to 137Cs, 60Co, 152Eu point source depth using HPGe detector and MCNP simulation. The effects of measurement distance of PTV and PTC methods were evaluated. Using the results, the source depth assessment equation using the PTC and PTV methods was derived based on the detection distance of 50 cm. In addition, the sensitivity of detection distance changes was assessed when using PTV and PTC methods, and error increased by 3 to 4 cm when detection distance decreased by 20 cm based on 50 cm. However, it was confirmed that if the detection distance was increased to 100 cm, the effects of detection distance were small. And PTV and PTC methods were compared with the two distance measurement method which evaluates the depth of source by the change of net peak counting rate according to the detection distance. As a result of source depth assessment, the PTV and PTC showed a maximum error of 1.87 cm and the two distance measurement method showed maximum error of 2.69 cm. The results of the experiment confirmed that the accuracy of the PTV and PTC methods was higher than two distance measurement. In addition, Sensitivity evaluation by horizontal position error of source has maximum error of less than 25.59 cm for the two distance measurement method. On the other hand, PTV and PTC method showed high accuracy with maximum error of less than 8.04 cm. In addition, the PTC method has lowest standard deviation for the same time measurement, which is expected to enable rapid measurement.

본 연구는 감마스펙트럼 비율을 이용한 매립된 선원의 깊이 평가방법 개발 및 적용성 확인을 위해 진행되었다. 이를 위해 현장측정 HPGe 계측기 및 MCNP 전산모사를 이용하여 137Cs, 60Co, 152Eu 선원의 매질 내 깊이와 계측거리에 따른 Peak to Compton, Peak to Valley 비율(Q)의 변화를 평가하였다. 해당 결과를 이용해 계측거리 50 cm를 기준으로 PTV 및 PTC 비율(Q)과 매립 선원의 깊이 간의 상관 식을 도출하였다. 그리고 PTC 및 PTV 방법 이용 시 계측거리 변화에 따른 민감도를 평가한 결과, 50 cm 기준으로 계측거리가 20 cm로 감소할 경우 오차가 3 ~ 4 cm까지 증가하였다. 하지만 100 cm로 증가할 경우 계측거리에 의한 영향이 미미함을 확인하였다. 그리고 PTV 및 PTC 방법과 피크 영역의 계수율 변화를 통해 선원의 깊이를 평가하는 Two distance measurement 방법을 상호 비교하였다. 평가 결과 PTV 및 PTC 방법은 최대 1.87 cm의 오차, Two distance measurement 방법은 최대 2.69 cm의 오차를 나타내어 PTV, PTC 방법의 정확도가 비교적 높음을 확인하였다. 선원의 수평 방향 위치 변화 민감도 평가 결과 Two distance measurement 방법은 선원이 off-center 방향으로 30 cm 이동하였을 경우 최대 오차가 25.59 cm로 나타났다. 반면 PTV 및 PTC 방법은 최대 오차 8.04 cm로 현장 적용 시 높은 정확도를 나타낼 것으로 예상된다. 그리고 PTC 방법은 동일 시간 측정 시 다른 방법과 비교하여 낮은 표준편차를 나타내 신속한 평가가 가능할 것으로 기대된다.

Keywords

References

  1. International Atomic Energy Agency, "Characterization of radioactively contaminated sites for remediation purposes", IAEA-TECDOC-1017, 1998.
  2. C. Andrieu, T. Boisserie, Y. Desnoyers, C.O. Dehaye, and F. Tardy et al, Radiological Characterisation for Decommissioning of Nuclear Installations, Final Report of the Task Group on Radiological Characterization and Decommissioning (RCD) of the Working Party on Decommissioning and Dismantling (WPDD), NEA/OECD, NEA/RWM/WPDD(2013)2, 2013.
  3. E.W. Abelquist, W.S. Brown, G.E. Powers, and A.M. Huffert, "Minimum Detectable Concentrations With Typical Radiation Survey Instruments for Various Contaminants and Field Conditions", Nuclear Regulatory Commission (NRC), NUREG-1507 (1998).
  4. A. Al-Ghamdi and X.G. Xu, "Estimating the depth of embedded contaminants from in-situ spectroscopic measurement", Health Phys., 84(5), 632-636 (2003). https://doi.org/10.1097/00004032-200305000-00009
  5. R.B. Oberer, C.A. Gunn, and L.G. Chiang, "Small-angle Compton scattering used to determine the depth of a radioactive source in material and to estimate gamma-ray attenuation", Nucl. Instrum. Methods in Phys. Res., 722, 65-70 (2013). https://doi.org/10.1016/j.nima.2013.04.059
  6. A.N. Tyler, D.C.W. Sandersor, and E.M. Scott, "Estimating and Accounting for $^{137}Cs$ Source Burial through In-Situ Gamma Spectrometry in Salt Marsh Environments", J. Env. Radioactivity, 33(3), 195-212 (1996). https://doi.org/10.1016/0265-931X(95)00098-U
  7. C.J. Werner, J. Armstrong, F.B. Brown, J.S. Bull, and L. Casswell et al, "MCNP user's manual code version 6.2", Los Alamos National Laboratory, LA-UR-17-29981 (2017).
  8. W.H. Ha, J.R. Yoo, S.W. Yoon, M.J. Park, and J.K. Kim, "Simulation of Counting Efficiencies of Portable NaI Detector for Rapid Screening of Internal Exposure in Radiation Emergencies", J. Radiat. Prot. Res., 40(4), 211-215 (2015). https://doi.org/10.14407/jrp.2015.40.4.211
  9. J.H. Hubbell and S.M. Seltzer, "Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest", National Institute of Standards and Technology, NISTIR 5632 (1995).

Cited by

  1. Wireless Backpack System for Detection of Radioactive Cesium on Contaminated Soil Using Portable Plastic Scintillator with Efficient Readout Device vol.10, pp.22, 2021, https://doi.org/10.3390/electronics10222833