• Title/Summary/Keyword: In Ground Effect

Search Result 3,801, Processing Time 0.036 seconds

Experimental Study on Lateral Flow Behavior of Soft Ground due to Embankment (성토로 인한 연약지반의 측방유동 거동에 관한 실내모형실험)

  • You, Seung-Kyong;Kim, Jae-Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.1
    • /
    • pp.43-51
    • /
    • 2011
  • Pile-supported embankment is one of the reinforcing methods to minimize damage due to the severe subsidence and lateral flow when soft clay ground is supported with embankment. pile-supported embankment mainly penetrates soft ground into the bearing stratum in order to support surcharge load which minimizes the subsidence and lateral flow due to the surcharge load. The aim of this research is to review quantitatively reinforcing effect of pile-supported embankment which is installed in soft clay ground. From the model test, it reproduced the ground movement with regard to the non-reinforced and reinforcing embankment-pile and also analyzed stabilizing effects of lateral flow due to the pile-supported embankment. With regard to the case of installing pile-supported embankment, its were analyzed stabilizing effects of lateral flow in cases of quick-load and slow-load to make different surcharge load.

Search for Ground Moving Targets Using Dynamic Probability Maps (동적 확률지도를 이용한 지상 이동표적 탐색)

  • Kim, Eun-Kyu;Choi, Bong-Wan;Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.11-21
    • /
    • 2015
  • In order to achieve success in ground operations, searching for moving targets is one of critical factors. Usually, the system of searching for adversary ground moving targets has complex properties which includes target's moving characteristics, camouflage level, terrain, weather, available search time window, distance between target and searcher, moving speed, target's tactics, etc. The purpose of this paper is to present a practical quantitative method for effectively searching for infiltrated moving targets considering aforementioned complex properties. Based upon search theories, this paper consists of two parts. One is infiltration route analysis, through terrain and mobility analysis. The other is building dynamic probability maps through Monte Carlo simulation to determine the prioritized searching area for moving targets. This study primarily considers ground moving targets' moving pattern. These move by foot and because terrain has a great effect on the target's movement, they generally travel along a constrained path. With the ideas based on the terrain's effect, this study deliberately performed terrain and mobility analysis and built a constrained path. In addition, dynamic probability maps taking terrain condition and a target's moving speed into consideration is proposed. This analysis is considerably distinct from other existing studies using supposed transition probability for searching moving targets. A case study is performed to validate the effectiveness and usefulness of our methodology. Also, this study suggests that the proposed approach can be used for searching for infiltrated ground moving target within critical time window. The proposed method could be used not only to assist a searcher's mission planning, but also to support the tactical commander's timely decision making ability and ensure the operations' success.

Numerical Evaluation of Boundary Effects in the Laminar Shear Box System (층 분할된 연성전단상자의 경계효과에 관한 수치해석적 분석)

  • Kim, Jin-Man;Ryu, Jeong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.35-41
    • /
    • 2008
  • Laminar-shear-boxes are widely used to simulate free-field seismic ground response by using a l-g shaking table or geo centrifuge in geotechnical earthquake engineering. This study numerically modeled and compared the ground responses in the free field, rigid box, and laminar shear box by using a 3-D FEM program. It is found from the numerical simulations that the laminar shear box can simulate the free field ground movement more precisely than the rigid box. However, the laminar shear box underestimated the surface acceleration of the free field ground. It also showed low-frequency characteristics probably because the stiffness and inertia effect of surrounding ground are neglected.

Development of Apparatus for Measuring Hydraulic Resistance of Sea Ground Considering Tidal Current Flow (조류 흐름을 고려한 해양지반 수리저항성능 실험기 개발)

  • Kang, Kyoung-O;Jeong, Hyun-Chel;Kim, Young-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1366-1369
    • /
    • 2010
  • Along with the increasing need of sea development, the hydraulic stability of seabed structure on a soft seafloor ground is becoming an issue in the course of seaside development recently. However, the movement and hydraulic resistance or hydraulic stability of seafloor ground are mutually coupled with various phenomena, and there has been no clear proof for the issue, which makes it difficult to forecast. Furthermore, most researches are focused on hydraulic variables and the conditions of marine external force, while there have been few researches into the assessment in consideration of the type of a seafloor ground and the geotechnical characteristics. In addition, according to the periodic change of the flow direction, possible changes in hydraulic resistance performance of the seafloor deserves all the recognition. But there is no way to measure the hydraulic unstability of the sea ground due to tidal flow quantitatively. In this study, conventional hydraulic resistance measurement apparatus was improved to consider direction change of the current flow. Various artificial clayey soil specimens were made from Kaolinite and Jumunjin standard sand and hydraulic resistance tests were performed by changing the flow direction to validate the effect of the direction change on the scour of the seafloor.

  • PDF

Antimicrobial Effect of Buffered Sodium Citrate (BSC) on Foodborne Pathogens in Liquid Media and Ground Beef

  • Ryu, Si-Hyun;Fung, Daniel -Y. C.
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.3
    • /
    • pp.239-243
    • /
    • 2010
  • The antimicrobial effects of a commercially available, buffered sodium citrate (BSC) were evaluated for the reduction of total aerobic bacteria count, Salmonella Typhimurium, Escherichia coli O157:H7, Listeria monocytogenes and Staphylococcus aureus in a liquid medium and ground beef. BSC at 0, 1, 2 and 4.8% (wt/vol) or 0, 3, and 4.8% (wt/wt) was mixed into inoculated brain heart infusion (BHI) broth and ground beef (80% lean), respectively. BSC at concentrations of 1 and 2% did not inhibit growth of the pathogens tested in BHI broth. E. coli O157:H7 in BHI broth with 4.8% BSC was significantly reduced (p<0.05) by 3~4 log CFU/mL compared with the control for up to 4 days. At 4.8%, BSC treatment of ground beef most significantly reduced (p<0.05) total aerobic count and E. coli O157:H7 by 2.1 and 2.0 log CFU/g, respectively. This study indicates that the legally allowable level of 1.3% (wt/wt) BSC is not effective for reducing the pathogens tested in ground beef stored at $7^{\circ}C$.

THE EFFECT OF PHYSICAL CHARACTERISTICS OF HAY DIETS ON PHOSPHORUS METABOLISM IN SHEEP

  • Junluang, W.;Yano, F.;Yano, H.;Kawashima, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.505-510
    • /
    • 1992
  • The experiments were carried out to study the effect of physical forms of hay diet on phosphorus metabolism by offering sheep roughage diets containing a low phosphorus content. The sheep were fed coarse hay, short hay or finely ground pelleted hay. The physical forms of hat diet had little effect on the pathway of phosphorus excretion. In all groups, the most of phosphorus was excreted in feces and urinary phosphorus excretion was negligible. Duodenal fluid flow, rumen fluid outflow and estimated salivary flow appeared to be relatively high in sheep fed the coarse hay diet as compared to those in sheep fed the finely ground diet. The amount of phosphorus flow to the duodenum tended to be high in the coarse diet group as compared to those in other two groups. On the other hand, phosphorus concentrations in the duodenal fluid and the rumen fluid were lower in sheep fed the coarse hay diet than those in sheep fed the ground hay. Net intestinal phosphorus absorption tended to be higher in sheep fed the coarse hay than that in sheep fed the ground hay or pelleted hay. However, a negative phosphorus balance was observed in the coarse hay diet group although a positive phosphorus balance was found in other two groups. It was considered that salivary phosphorus secretion was greater than the amount of salivary phosphorus reabsorbed from the intestine, resulting in the negative of phosphorus balance in sheep fed the coarse hay.

The Effect of Pressurized Grouting on Pullout Resistance and the Group Effect of Compression Ground Anchor (가압식 압축형 지반앵커의 인발저항력 증대효과 및 군효과 특성)

  • Kim, Tae-Seob;Sim, Bo-Kyoung;Lee, Kou-Sang;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.5-19
    • /
    • 2010
  • The purpose of this study is to figure out the effect of pressurized grouting on the pullout resistance and the group effect of the compression ground anchor by performing pilot-scale chamber tests and field tests. The laboratory tests are carried out for 3-types of soils which are abundant in the Korean peninsular. Experimental results showed that the enlargement of anchor diameters estimated from the cavity expansion theory matches reasonable well with that obtained from experiments. Moreover, the required injection time as a function of the coefficient of permeability of each soil type was proposed. A series of in-situ anchor pullout tests were also performed to experimentally figure out the effect of pressurized grouting on the pullout resistance. Experimental results also showed that the effect of the pressurized grouting is more prominent in a softer ground with smaller SPT-N value in all of the following three aspects: increase in anchor diameter; pullout resistance; and surface roughness. The pressurized grouting effect in comparison with gravitational grouting was found to be almost nil if the SPT-N value is more than 50. Based on experimental results, a new equation to estimate the pullout resistance as a function of the SPT-N value was proposed. And based on in-situ group anchor pullout tests results, a new group effect equation was proposed which might be applicable to decomposed residual soils which are abundant in the Korean peninsular.

A Study on the Design Load of Artificial Soil Ground (인공지반의 설계하중 산정에 관한 연구)

  • Youn, Seong-Cheol;Kim, Tae-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.2
    • /
    • pp.36-46
    • /
    • 2009
  • The objective of this study is to analyze the effect of artificial soil ground on a structure. When the artificial soil ground is planted, the technical factors to be considered will be the load for buildings and the growth of plants. There are no current studies of the effect of artificial soil ground on a structure and this study will analyze the load effects of artificial soil ground, which mixes both pearlite and natural soil on structures. The load affecting the structures due to artificial soil ground will be maximized when the artificial soil ground becomes saturated, and which would occur when the rainfall intensity exceeds the infiltration capacity of the artificial soil ground. In order to determine whether the artificial soil ground has reached saturation or not, a 10 years frequency and 10 minutes rainfall intensity which is used for in urban drain design, is utilized. The hydraulic conductivity of artificial soil and mixed soil has been changed depending on the proportion of the mix, It has a range of fluctuation in the degree of hardening, in particular, but does not exceed the 10 minutes rainfall intensity over 10 years frequency in the most cases. Therefore, it would be efficient to apply the saturated unit weight of artificial soil ground as the design load of a structure.

The effect of local topography on the seismic response of a coupled train-bridge system

  • Qiao, Hong;Du, Xianting;Xia, He;De Roeck, Guido;Lombaert, Geert;Long, Peiheng
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.177-191
    • /
    • 2019
  • The local topography has a significant effect on the characteristics of seismic ground motion. This paper investigates the influence of topographic effects on the seismic response of a train-bridge system. A 3-D finite element model with local absorbing boundary conditions is established for the local site. The time histories of seismic ground motion are converted into equivalent loads on the artificial boundary, to obtain the seismic input at the bridge supports. The analysis of the train-bridge system subjected to multi-support seismic excitations is performed, by applying the displacement time histories of the seismic ground motion to the bridge supports. In a case study considering a bridge with a span of 466 m crossing a valley, the seismic response of the train-bridge system is analyzed. The results show that the local topography and the incident angle of seismic waves have a significant effect on the seismic response of the train-bridge system. Leaving these effects out of consideration may lead to unsafe analysis results.

The effect of the number of subintervals upon the quantification of the seismic probabilistic safety assessment of a nuclear power plant

  • Ji Suk Kim;Man Cheol Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1420-1427
    • /
    • 2023
  • Seismic risk has received increased attention since the 2011 Fukushima accident in Japan. The seismic risk of a nuclear power plant is evaluated via seismic probabilistic safety assessment (PSA), for which several methods are available. Recently, the discrete approach has become widely used. This approximates the seismic risk by discretizing the ground motion level interval into a small number of subintervals with the expectation of providing a conservative result. The present study examines the effect of the number of subintervals upon the results of seismic risk quantification. It is demonstrated that a small number of subintervals may lead to either an underestimation or overestimation of the seismic risk depending on the ground motion level. The present paper also provides a method for finding the boundaries between overestimation and underestimation regions, and illustrates the effect of the number of subintervals upon the seismic risk evaluation with an example. By providing a method for determining the effect of a small number of subintervals upon the results of seismic risk quantification, the present study will assist seismic PSA analysts to determine the appropriate number of subintervals and to better understand seismic risk quantification.