• Title/Summary/Keyword: Impulsive Wave

Search Result 118, Processing Time 0.027 seconds

Study of the Open End Correction of the Impulsive Wave Discharging from a Duct Exit (관출구로부터 방출하는 펄스파의 개구단 보정에 관한 연구)

  • 이동훈;김희동
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.7
    • /
    • pp.239-246
    • /
    • 2001
  • The present study addresses the open correction associated with the reflection and discharge phenomena of a weak shock wave from an open end of a duct. The open correction of the weak shock wave is investigated experimentally and by numerical computation. An experiment is made using a simple shock tube with an open end. and computaion is performed to simulate the experimental flow field using the unsteady, axisymmetric compressible. flow governing equations. The results obtained show the an open correction should be involved for shock wave discharge and reflection problems generated from the exit of the duct with an open baffle plate. With a baffle plate less than three times the duct diameter, it is found that the open end correction is a function of both the diameter of the baffle plate and normal shock wave magnitude However, for a baffle plate larger than three the duct diameter it is independent of the baffle plate diametre, The present computations predict the results of shock tube experiment with good accuracy. A new empirical equation for prediction of the open correction is found for the weak shock reflection and discharge phenomena occurring at the open of the duct with and without a baffle plate.

  • PDF

Effect of Tube Area on the Impulse Wave Discharged from the Exit of Tube (관출구로부터 방출되는 펄스파에 미치는 관단면적의 영향)

  • Shin, Hyun-Dong;Lee, Young-Ki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.544-549
    • /
    • 2003
  • When a shock wave arrives at an open end of tube, an impulse wave is discharged from the tube exit and causes serious noise and vibration problems. In the current study, the effect of the cross-sectional area of tube on the impulse wave is numerically investigated using a CFD method. The Harten-Yee's total variation diminishing(TVD) scheme is used to solve the axisymmetric, two-dimensional, unsteady, compressible Euler equations. With three different cross-sectional areas of tube, the Mach number of the incident shock wave $M_{s}$ is varied between 1.01 and 1.5. The results obtained show that the directivity and magnitude of impulse wave strongly depend upon the Mach number of incident shock wave and are influenced by the tube area. It is also known that the tube cross-sectional area significantly affects the magnitude of impulse wave at or near the tube axis.

  • PDF

Effect of Tunnel Entrance Hood on Entry Compression Wave (입구후드가 고속철도 터널입구의 압축파에 미치는 영향)

  • Kim, Heuy-Dong;Kim, Tae-Ho;Kim, Dong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.58-68
    • /
    • 1999
  • The entry compression wave, which forms at the entrance of a high-speed railway tunnel, is closely related to the pressure transients in the train/tunnel systems as well as an impulsive noise appearing at the exit of the tunnel. In order to alleviate such undesirable phenomena, some control strategies have been applied to the compression wave propagating inside the tunnel. The objective of the current work is to investigate the effect of tunnel entrance hoods on the entry compression wave at the vicinity of the tunnel entrance. Three types of entrance hoods were tested by the numerical method using the characteristics of method for a wide range of train speeds. The results show that the maximum pressure gradient of compression wave can be considerably reduced by the tunnel entrance hood. Optimum hood shape necessary to reduce the pressure transients and impulsive noise was found to be of an abrupt type hood with its cross-sectional area 2.5 times the tunnel area. It is believed that the current results are highly useful in predicting the effects of entrance hoods and in choosing the shape of proper hood.

Numerical Simulation for the Effect of Entrance Hood on Pressure of High Speed Railway Tunnel (입구후드가 고속열차 터널의 압력에 미치는 영향에 대한 수치해석 적 연구)

  • 김동현;이재범;양신추;이희성;오일근
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.406-413
    • /
    • 1999
  • A compression wave is generated by the high speed train which enters a tunnel, and it propagates along the tunnel. When the compression wave emerges from the exit of the tunnel, it causes an impulsive noise, and the strength of the impulsive noise depends on the pressure gradient of the first compression wave. So it needs to reduce the pressure gradient for the minimization of impulsive noise. The entrance hood is used for the reduction of the pressure gradient. In the present study, the pressure transients were numerically calculated for three shapes of hood, In order to validate the numerical simulation, the pressure and pressure gradient were compared with the experimental data of moving model rig. The calculation results won well agreed with the experimental data, and also showed that the hood had an effect on the pressure gradient of the tunnel inside.

  • PDF

Performance analysis of PSK communication system according to the types of disturbance of electromagnetic interference in an impulsive noise environment (임펄스 잡음 환경하에서 전자파 장해 (EMI)의 유형에 따른 PSK 통신시스템의 성능 해석)

  • 조성언;이기정;고봉진;조성준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • The purpose of this paper is to analyze the performance of M-ary PSK communication system according to the types of electromagnetic interference in an impulsive noise environment. We have introduced Gaussian, sinusoidal and rectangular waves as a electromagnetic interference. Using the derived equations, we evaluated the error performance of the BPSK and QPSK system in the presence of electromagnetic interference and impulsive noise. From results, we have obtained that the Gaussian wave produced the most significant performance degradation and that sinusoidal wave produced more performance degradation than rectangular wave. Therefore, without knowing the types of electromagnetic interference, it is best to regard it as Gaussian wave when designing a communication system. In addition, we could found out that the error performance degrades as impulsive noise becomes strong and the error performance can not be improved significantly even the electromagnetic interference becomes weak. Therefore, this describes that the impulsive noise affects dominantly to the performance degradation.

  • PDF

An Evaluation of Silencer Characteristics by Live Firing Test (실사격에 의한 소음기 특성 평가)

  • Kang, Kuk-Jeong;Ko, Sung-Ho;Kwak, Young-Kyun;Lee, Duck-Joo;Lee, In-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.217-224
    • /
    • 2007
  • The present work addresses an experimental study on sound attenuation characteristics of silencer by live firing test. When a gun fires, there exists excessive noise which propagates as a form of blast wave. As muzzle energy of the weapon systems increases, the level of impulsive noise also increases. It is well known that the impulsive noise from a gun gives a serious damage to human bodies and structures. The adverse effects of impulsive sound also cause both social and military problems. So it is very important to study the characteristics of the impulsive sound attenuation. The live firing test is performed to evaluate the effect of four different silencers. The test result is compared with the case of bare muzzle which is not installed the silencer. The frequency characteristics are also analyzed to investigate the diminution of sound pressure level. The results of this study will be helpful to the designing silencer for large caliber weapon systems.

Physical Model Test for Wave Overtopping for Vertical Seawall with Relatively Steep Bottom Slope for the Impulsive Wave Condition (상대적으로 급한 경사 수심을 갖는 직립식 호안에서 충격파 조건에 대한 월파량 산정 수리실험)

  • Young-Taek Kim;Jong-In Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.2
    • /
    • pp.33-40
    • /
    • 2023
  • Wave overtopping rate is one of the most important design parameters for coastal structures. In this study, the physical model tests for measuring the wave overtopping have been conducted with the foreshore slope in front of the seawall. The bottom seabed for the coastal road area was fabricated at the wave flume for two areas in the East sea areas. The wave overtopping rate was measured for various water depths and wave conditions in each coastal area. In particular, the impulsive wave conditions were compared with the previous research and the similar trends of wave overtopping was observed. It could be known that the effect of foreshore slope was significant and should be concerned for applying theses formula like EurOtop.

Influence of impulsive line source and non-homogeneity on the propagation of SH-wave in an isotropic medium

  • Kakar, Rajneesh
    • Interaction and multiscale mechanics
    • /
    • v.6 no.3
    • /
    • pp.287-300
    • /
    • 2013
  • In this paper, the effect of impulsive line on the propagation of shear waves in non-homogeneous elastic layer is investigated. The rigidity and density in the intermediate layer is assumed to vary quadratic as functions of depth. The dispersion equation is obtained by using the Fourier transform and Green's function technique. The study ends with the mathematical calculations for transmitted wave in the layer. These equations are in complete agreement with the classical results when the non-homogeneity parameters are neglected. Various curves are plotted to show the effects of non-homogeneities on shear waves in the intermediate layer.

Study of Shock Tube for Wave Phenomenon in High Speed Railway Tunnel(1) - On the characteristics of Compression Wave - (고속철도 터널에서 발생하는 파동현상에 관한 충격파관의 연구(1) - 압축파의 특성에 대하여 -)

  • ;松尾一泰
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2686-2697
    • /
    • 1994
  • When a railway train enters a tunnel at high speed, a compression wave is formed in front of the train and propagates along the tunnel. The compression wave subsequently emerges from the exit of the tunnel, which causes an impulsive noise. In order to estimate the magnitudes of the noises and to effectively minimize them, the characteristics of the compression wave propagating in a tunnel must be understood. In the present paper, the experimental and analytical investigations on the attenuation and distortion of the propagating compression waves were carried out using a model tunnel. This facility is a kind of open-ended shock tube with a fast-opening gate valve instead of a general diaphragm. One-dimensional flow model employed in the present study could appropriately predict the strength of the compression wave, Mach number and flow velocity induced by the compression wave. The experimental results show that the strength of a compression wave decreases with the distance from the tunnel entrance. The decreasing rate of the wave strength and pressure gradient in the wave is strongly dependent on the strength of the initial compression wave at the tunnel entrance.

Tunnel Sonic Boom Analysis using monopole source modeling (홀극음원 모델링을 이용한 고속전철 터널 충격성 소음해석)

  • Jung W.T.;Yoon T.S.;Lee S.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.427-432
    • /
    • 1999
  • When a high-speed train enters a tunnel, a compression wave is generated. This wave subsequently emerges from the exit portal of the tunnel, which causes an impulsive noise called 'Sonic boom' or 'micro-pressure wave'. In the present study, new method is presented for prediction of sonic boom noise, especially focusing on the effect of the nose shape of the train on the resultant noise. Acoustic theory for monopole source is used to represent a nose shape of the train in wave equation. Compression wave propagation in tunnel considering tunnel track condition and emission of sonic boom was calculated. The predicted compression waves and impulsive sound waves are compared with recent measurements, and show reasonable agreements.

  • PDF