• 제목/요약/키워드: Impulsive Wave

검색결과 118건 처리시간 0.024초

Experimental assessment of slamming coefficients for subsea equipment installations

  • de Oliveira, Allan C;Pestana, Rafael G
    • Ocean Systems Engineering
    • /
    • 제10권2호
    • /
    • pp.163-179
    • /
    • 2020
  • Considering the huge demand of several types of subsea equipment, as Christmas Trees, PLEMs (Pipeline End Manifolds), PLETs (Pipeline End Terminations) and manifolds for instance, a critical phase is its installation, especially when the equipment goes down through the water, crossing the splash zone. In this phase, the equipment is subject to slamming loads, which can induce impulsive loads in the installation wires and lead to their rupture. Slamming loads assessment formulation can be found in many references, like the Recommended Practice RP-N103 from DNV-GL (2011), a useful guide to evaluate installation loads. Regarding to the slamming loads, RP-N103 adopt some simplifying assumptions, as considering small dimensions for the equipment in relation to wave length, in order to estimate the slamming coefficient CS used in load estimation. In this article, an experimental investigation based on typical subsea structure dimensions was performed to assess the slamming coefficient evaluation, considering a more specific scenario in terms of application, and some reduction of the slamming coefficient is achieved for higher velocities, with positive impact on operability.

PROPAGATION OF SUDDEN IMPULSES IN A DIPOLAR MAGNETOSPHERE

  • LEE DONG-HUN;SUNG SUK-KYUNG
    • 천문학회지
    • /
    • 제36권spc1호
    • /
    • pp.101-107
    • /
    • 2003
  • The magnetosphere is often perturbed by impulsive input such as interplanetary shocks and solar wind discontinuities. We study how these initial perturbations are propagating within the magnetosphere over various latitude regions by adopting a three-dimensional numerical dipole model. We examine the wave propagation on a meridional plane in a time-dependent manner and compare the numerical results with multi-satellite and ground observations. The dipole model is used to represent the plasmasphere and magnetosphere with a realistic Alfven speed profile. It is found that the effects of refraction, which result from magnetic field curvature and inhomogeneous Alfven speed, are' found to become important near the plasmapause. Our results show that, when the disturbances are assumed at the subsolar point of the dayside magnetosphere, the travel time becomes smaller to the polar ionosphere compared to the equatorial ionosphere.

지능형 포탄의 저 감속 회수장치를 이용한 포탄의 감속방법 (Deceleration Method of Munition to used Soft Recovery System for Smart Munition)

  • 김명구;조종두;이승수;유일용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.191-196
    • /
    • 2007
  • With the development of micro electronic circuits and optical equipment, the demand for developing smart munitions with the ability to autonomously search for and attack targets has increased. Since the electronic components within smart munitions are affected by high temperatures, pressure, and impulsive forces upon the combustion of gunpowder, stability and reliability need to be secured for them. Securing those stability and reliability requires soft recovery system which can decelerate smart munitions. A theoretical analysis of flow is performed for the secure recovery of bullets on the basis of Navier-Stokes equation for compressible fluids. The inner pressure on a pressure tube, the speeds of bullets, and the deceleration of munitions are calculated theoretically. Theoretical results are compared with the data from the experiment with soft recovery system set up at the laboratory.

  • PDF

W-Ti 분말 압축 (I) (Tungsten-Titanium Powder Compaction by Impulsive Loading (I))

  • Dal Sun Kim;S.Nemat-Nasser
    • 화약ㆍ발파
    • /
    • 제19권1호
    • /
    • pp.101-110
    • /
    • 2001
  • Depleted uranium (DU) outperforms tungsten heavy alloys (WHA) by about 10%. Because of environmental and hence, political concerns, there is a need to improve WHA performance, in order to replace the DU penetrators. A technique of metal powder compaction by the detonation of an explosive has been applied to tungsten-titanium(W-Ti) powder materials that otherwise may be difficult to fabricate conventionally or have dissimilar, nonequilibrium, or unique me1astab1e substructures. However, the engineering properties of compacted materials are not widely reported and are little known especially for the "unique" composition of W-Ti alloy. To develop high-performance tungsten composites with superior ballistic attributes, it is necessary to understand, carefully document controlled experimental results, and develop basic computational models for potential composites with controlled microstructures. A detailed understanding and engineering application of W-Ti alloy can lead to the development of new structural design for engineering components and materials.

  • PDF

Computational impact responses of reinforced concrete slabs

  • Mokhatar, S.N.;Abdullah, R.;Kueh, A.B.H.
    • Computers and Concrete
    • /
    • 제12권1호
    • /
    • pp.37-51
    • /
    • 2013
  • The responses of reinforced concrete slabs subject to an impact loading near the ultimate load range are explored. The analysis is carried out on a simply supported rectangular reinforced concrete slab using a nonlinear explicit dynamic procedure and considering three material models: Drucker-Prager, modified Drucker-Prager, and concrete damaged plasticity, available in the commercial finite element software, ABAQUS/Explicit. For comparison purposes, the impact force-time response, steel reinforcement failure, and concrete perforation pattern are verified against the existing experimental results. Also, the effectiveness of mesh density and damage wave propagation are studied independently. It is shown that the presently adopted finite element procedure is able to simulate and predict fairly accurate the behavior of reinforced concrete slab under impact load. More detailed investigations are however demanded for the justification of effects coming from an imperfect projectile orientation as well as the load and structural surface conditions, including the impulsive contacted state, which are inevitable in an actual impact environment.

고속열차 주위의 점성 압축성 2차원 유동해석 (Numerical Analysis of 2-Dimensional Viscous Compressible Flow around the High Speed Train)

  • 하성도;김유일
    • 연구논문집
    • /
    • 통권25호
    • /
    • pp.13-22
    • /
    • 1995
  • At the running speed higher than 250 km/h, several aerodynamic problems such as the increase of aerodynamic resistance, aerodynamic noise, pressure fluctuation at the tunnel entry, impulsive wave at the tunnel exit bring about the power consumption, deterioration of riding quality, and severe environmental noise. To solve these aerodynamic problems, the flow phenomena around the high speed train have to be analyzed in detail. In this study, the flow around the train is modelled as the 2-dimensional viscous compressible flow and the flow field is calculated numerically for the three different types of geometry and running speed. The aerodynamic drag coefficient and the pressure coefficient are evaluated each case.

  • PDF

DSRC 시스템의 성능해석 및 개선 (Performance Analysis and Improvement of Dedicated Short Range Communication System)

  • 박주남;조성준
    • 한국항행학회논문지
    • /
    • 제5권1호
    • /
    • pp.62-73
    • /
    • 2001
  • 본 논문에서는 ITS의 통신 방식인 DSRC 시스템을 실제의 도로규격과 차량의 높이를 적용하여 성능을 분석하였다. DSRC는 LOS 전파특성을 가지므로 물리계층에서는 직접파와 도로면과 건물에서의 반사파를 고려한 2-Ray와 4-Ray로 채널을 모델링하여 각각의 모델별 경로손실을 구하였다. 이를 근거로 DSRC에서의 라이시안 심도를 유도하여 AWGN과 라이시안 페이딩, 임펄스성 잡음과 라이시안 페이딩 채널에서의 시스템 성능을 분석하였다. 그 결과 임펄스 지수가 A=0.2, ${\Gamma}^{\prime}=0.22$일 때 2-Ray 모델에서는 약 80[m], 4-Ray 모델에서는 약 40[m] 이후의 거리에서부터는 BER이 $10^{-6}$이하로 성능이 열화되었고 이를 개선하기 위하여 BCH 부호화 기법과 MRC 다이버시티 기법을 적용하여 시스템의 성능을 분석하였다.

  • PDF

충격하중(衝擊荷重)을 받는 구조물(構造物)의 소성(塑性)모델에 따른 거동분석(擧動分析) (A Plastic Analysis of Structures under the Impact Loading)

  • 안병기;이상호
    • 대한토목학회논문집
    • /
    • 제12권2호
    • /
    • pp.21-33
    • /
    • 1992
  • 충격하중을 받는 구조물은 초고압에서 부터 저압까지 다양한 압력을 짧은 시간에 경험하게 된다. 따라서 이들 구조물을 해석하기 위해서는 실제 물체의 재료특성을 표현할 수 있는 구성 법칙(constitutive law)이 필요하게 된다. 본 연구에서는 압력 부종속모델(pressure independent model)인 Von-Mises 모델과 압력 종속모델(pressure dependent model)인 Drucker-Prager 모델을 사용하여 충격과 폭발 현상시 발생하는 응력파의 전파과정(propagation process)을 재료특성에 따라 비교 분석하였다. 응력파의 전파과정을 연구하기 위한 지배 방정식(governing equation)으로서는 물체에 종속되어 있는 라그란지안 좌표계(lagrangian coordinate system)로 표현된 운동량과 질량보존(conservation of momentum and mass)법칙을 사용하였으며 또한 충격전면(shock front)에 연속성을 부여하기 위해 인공점성(artificial viscosity)을 운동량 보존식에 첨가하였다. 주요 방정식을 풀기 위한 수치해석법으로는 시간과 공간 좌표계로 구성된 유한차분법(finite difference method)을 사용하였으며 소성변형률을 구하기 위한 소성이론으로서는 Associated normality flow rule을 사용하였다.

  • PDF

A correlation method for high-frequency response of a cargo during dry transport in high seas

  • Vinayan, Vimal;Zou, Jun
    • Ocean Systems Engineering
    • /
    • 제6권2호
    • /
    • pp.143-159
    • /
    • 2016
  • Cargo, such as a Tension Leg Platform (TLP), Semi-submersible platform (Semi), Spar or a circular Floating Production Storage and Offloading (FPSO), are frequently dry-transported on a Heavy Lift Vessel (HLV) from the point of construction to the point of installation. The voyage can span months and the overhanging portions of the hull can be subject to frequent wave slamming events in rough weather. Tie-downs or sea-fastening are usually provided to ensure the safety of the cargo during the voyage and to keep the extreme responses of the cargo, primarily for the installed equipment and facilities, within the design limits. The proper design of the tie-down is dependent on the accurate prediction of the wave slamming loads the cargo will experience during the voyage. This is a difficult task and model testing is a widely accepted and adopted method to obtain reliable sea-fastening loads and extreme accelerations. However, it is crucial to realize the difference in the inherent stiffness of the instrument that is used to measure the tri-axial sea fastening loads and the prototype design of the tie-downs. It is practically not possible to scale the tri-axial load measuring instrument stiffness to reflect the real tie-down stiffness during tests. A correlation method is required to systematically and consistently account for the stiffness differences and correct the measured results. Direct application of the measured load tends to be conservative and lead to over-design that can reflect on the overall cost and schedule of the project. The objective here is to employ the established correlation method to provide proper high-frequency responses to topsides and hull design teams. In addition, guidance for optimizing tie-down design to avoid damage to the installed equipment, facilities and structural members can be provided.

Coupling of Electromagnetic and Electrostatic Waves in Inhomogeneous Plasmas

  • Kim, Kyung-Sub;Kim, Eun-Hwa;Lee, Dong-Hun
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.82-82
    • /
    • 2003
  • It is well known that electromagnetic (EM) waves are mode converted to electrostatic (ES) waves in inhomogeneous plasmas. We examine this issue in a three-dimensional multi-fluid numerical model. First, we derive a set of coupled linear wave equations when a one-dimensional inhomogeneous density profile is assumed in a cold and collisionless plasma. The massive ions are considered as fixed because we are interested in high frequency waves in plasmas. It is shown that the EM mode satisfies the 0th order modified Bessel equation near the resonant region where the frequency matches the local electron plasma frequency. It is expected that the EM waves are coupled and damped to the ES waves owing to the logarithmic singular behavior at such resonances. Second, we numerically test the same case in a 3-D multi-fluid model. An impulsive input is assumed to excite EM waves in the inhomogeneous 3-D box model. The wave spectra of electric and magnetic fields are presented and compared with the analytical results. Our results suggest that the EM energy is irreversibly converted into the ES energy wherever the resonant condition is satisfied. Finally we discuss how the mode conversion appears in both electric and magnetic fields by analyzing time histories of each component. We also compare our results with MHD wave coupling. It is numerically confirmed in this study that the coupling of EM and ES waves is similar to that of compressional and transverse MHD waves.

  • PDF