• Title/Summary/Keyword: Impulse technique

Search Result 259, Processing Time 0.023 seconds

Characterization and Analysis of UWB Antennas in Time Domain (시간 영역에서의 초광대역 안테나 특성 해석)

  • Song Jong-Hwa;Park Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.287-294
    • /
    • 2006
  • In the paper, characterization and analysis of UWB(Ultra Wide Band) antennas in time domain are described. The impulse propagation channel including UWB antennas is proposed for the analysis in time domain. Using the proposed propagation channel, the technique of obtaining impulse response of UWB antenna is proposed. Also, ringing, peak value of the impulse response, and the width of the impulse response are introduced as parameters for characterizing a UWB antenna in time domain. A modified UWB conical monopole antenna, a UWB TEM horn antenna, and a UWB stepped fat monopole antenna were fabricated. From the measurement of reflection coefficients, three antennas had bandwidth more than 3 GHz. The impulse responses of the antennas were measured in an anechoic chamber. The results showed that the TEM horn with highest gain has the highest peak amplitude and the stepped fat monopole antenna with narrowest bandwidth for reflection coeffcient had the widest width of the impulse response. Also, ringing in the stepped fat monopole antennas and the UWB conical monopole antenna were observed.

Effect of a Coil Shape on an Impulse Velocity of the Electromagnetic Welding (전자기 용접의 충돌 속도에 대한 코일 형상의 영향)

  • Park, H.;Lee, K.;Lee, J.;Lee, Y.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.28 no.3
    • /
    • pp.135-144
    • /
    • 2019
  • Electromagnetic impulse welding (EMIW) is a type of solid state welding using the Lorentz force generated by interaction between the magnetic field of the coil and the current induced in the workpiece. Although many experimental studies have been investigated on the expansion and compression welding of tube using the EMIW process, studies on the EMIW process of lap joint between flat sheets are uncommon. Since the magnetic field enveloped inside the tube can be controlled with ease, the electromagnetic technique has been widely used for tube welding. Conversely, it is difficult to control the magnetic field in the flat sheet welding so as to obtain the required welding velocity. The current study analyzed the effects of coil shape on the impulse velocity for suitable flat one-turn coil for the EMIW of the flat sheets. The finite element (FE) multi-physics simulation involving magnetic and structural field of EMIW were conducted with the commercial software LS-DYNA to evaluate the several shape variables, viz., influence of various widths, thicknesses, gaps and standoff distances of the flat one-turn coil on the impulse velocity. To obtain maximum impulse velocity, the flat one-turn coil was designed based on the FE simulation results. The experiments were performed using an aluminum alloy 1050 sheets of 1.0mm thickness using the designed flat one-turn coil. Through the microscopic interfacial analysis of the welded specimens, the interfacial connectivity was observed to have no defects. In addition, the single lap joint tests were performed to evaluate the welding strength, and a fracture occurred in the base material. As a result, a flat one-turn coil was successfully designed to guarantee welding with bond strength equal to or greater than the base material strength.

Design and Implementation of SDR-based Digital Filter Technique for Multi-Channel Systems (다중채널 시스템을 위한 SDR 기술기반의 디지털 필터 기법 설계 및 구현)

  • Yu, Bong-Guk;Bang, Young-Jo;Ra, Sung-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5A
    • /
    • pp.494-499
    • /
    • 2008
  • In this study, a Software Defined Radio(SDR) technology-based digital filtering technique applicable to a multiple channel processing system such as a wireless mobile communication system using Code Division Multiple Access(CDMA) technology is proposed. The technique includes a micro-processor to redesign Finite Impulse Response(FIR) filter coefficients according to specific system information and to download the filter coefficients to one digital Band Pass Filter(BPF) to reconfigure another system. The feasibility of the algorithm is verified by implementing a multiple channel signal generator that is reconfigurable to other system profiles, including those for a CDMA system and a WCDMA system on identical hardware platform.

An Improved Symbol Offset Estimation Technique in OFDM-based Wireless LANs (OFDM 기반 무선 LAN에서의 개선된 심볼옵셋 추정기법)

  • Jeon, Won-Gi;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1B
    • /
    • pp.66-78
    • /
    • 2002
  • In this paper, we propose a new symbol offset estimation technique for an orthogonal frequency-division multiplexing (OFDM)-based wireless LAN. When both inter-symbol interference (ISI) and inter-channel interference (ICI) do not exist in an OFDM symbol, symbol offsets cause circular shifts in the estimated channel impulse response (CIR) by the amount of symbol offset. Also, the power delay profile of a typical multipath wireless channel can be modeled by exponentially decaying function, and most energy of multipath channel is concentrated at the beginning part of the CIR. Based on these properties, the proposed symbol offset estimation technique estimates the CIR, which is circularly shifted by the amount of symbol offset, and then calculates the partial mean power from the estimated impulse response by using a moving window with a finite length. And, symbol offset can be estimated from the index of a moving window having the maximal partial mean power. The proposed technique can reduce noise effect in the process of the CIR estimation, and remove ISI and ICI using repetitive training symbol structure in time-domain for minimum training overhead. The performances of the proposed symbol offset estimation technique in typical indoor channels are demonstrated by computer simulation.

Performance Evaluation of the Advanced Physical Layer Modulation Techniques for Cable Modem Upstream Channel (케이블모뎀 상향 채널을 위한 Advanced PHY 변조 기술 성능 평가)

  • Cho, Byung-Hak;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.1-11
    • /
    • 2005
  • S-CDMA is the advanced physical layer modulation techniques of DOCSIS 2.0 specification. S-DMT is another challenging modulation technique for cable modem upstream channel due to the intrinsic robustness for fading and impulse noise. The BER performance of S-DMT and S-CDMA over the mixed channel model of AWGN and impulse noise were evaluated in comparison with TDMA. The mathematical BER derivation and the comparison of those three types of technique were performed based on the ${\varepsilon}-mixture$ non-Gaussian impulse noise model. The results of simulation show good compliance with those of analytic BER derivation. By the results of comparisons, it was verified that the performance of S-CDMA and S-DMT is almost the same, but the performance of S-DMT is far superior to that of TDMA at typical BER range of the practical data communications.

FRF Distortion Caused by Exponential Window Function on Impact Hammer Testing and Its Solution (지수창함수를 사용한 임팩트햄머 실험에서 주파수응답함수의 왜곡과 개선책)

  • 안세진;정의봉
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.334-340
    • /
    • 2003
  • Exponential window function Is widely used In impact hammer testing to reduce leakage error as well as to get a good S/N ratio. The larger its decaying rate is, the more effectively the leakage errors are reduced. But if the decay rate of the exponential window is too large, the FRF is distorted. And the modal parameters of the system can not be exactly identified by modal analysis technique. Therefore, it is a difficult problem to determine proper decay rate in impact hammer testing. In this paper, amount of the FRF distortion caused by exponential window is theoretically uncovered. A new circle fitting method is also proposed so that the modal parameters are directly extracted from impulse response spectrum distorted by the exponential-windowed impulse response data. The results by the conventional and proposed circle fitting method are compared through a numerical example.

X-Ray Image Enhancement Using a Boundary Division Wiener Filter and Wavelet-Based Image Fusion Approach

  • Khan, Sajid Ullah;Chai, Wang Yin;See, Chai Soo;Khan, Amjad
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • To resolve the problems of Poisson/impulse noise, blurriness, and sharpness in degraded X-ray images, a novel and efficient enhancement algorithm based on X-ray image fusion using a discrete wavelet transform is proposed in this paper. The proposed algorithm consists of two basics. First, it applies the techniques of boundary division to detect Poisson and impulse noise corrupted pixels and then uses the Wiener filter approach to restore those corrupted pixels. Second, it applies the sharpening technique to the same degraded X-ray image. Thus, it has two source X-ray images, which individually preserve the enhancement effects. The details and approximations of these sources X-ray images are fused via different fusion rules in the wavelet domain. The results of the experiment show that the proposed algorithm successfully combines the merits of the Wiener filter and sharpening and achieves a significant proficiency in the enhancement of degraded X-ray images exhibiting Poisson noise, blurriness, and edge details.

An Enhancement of Multi-Dof Frequency Response Spectrum From Impact Hammer Testing (충격햄머 실험에서 다자유도 주파수 응답스팩트럼의 개선)

  • Ahn, Se-Jin;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.623-629
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function(FRF) of the structure. However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. Since the response signals generated by the impact hammer are transient and have damping, they are undoubtedly non-periodic. It is inevitable that the signals be acquired for limited recording time, which causes the finite record length error and the leakage error. In this paper, the errors in the frequency response function of multi degree of freedom system are formulated theoretically. And the method to remove these errors is also suggested. This method is based on the optimization technique. A numerical example of 3-dof model shows the validity of the proposed method.

  • PDF

Firmness Measurement of Melon by Characteristics of Impact Signal (I) - Characteristics of Impact Signal of Melon - (충격신호 특성을 이용한 멜론의 경도측정(I) - 멜론의 충격신호특성 -)

  • Lee, Young-Hee;Choi, Dong-Soo;Choi, Seung-Ryul;Kim, Man-Soo;Kim, Ghi-Seok
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.239-247
    • /
    • 2008
  • Firmness is very important factor to evaluate the freshness and ripeness among the various factors, in concerning about the melon quality. This study was carried out to develop the technique using impact signal to measure the melon firmness nondestructively. Results of analyzing impulse signals of melons having different firmness levels showed that the firmness of melon affected various impulse responses including amplitude, transmitted time, maximum peak frequency, firmness index 1 ($f^2m$), and firmness index 2 ($f^2m^{2/3}$). Impulse signal amplitude was the best indicator to predict the firmness of melon because of a strong corelation ($R^2\;=\;0.9071$). Firmness index 1, firmness index 2, maximum peak frequency, and normalized transmitted time were also possible indicators with acceptable correlation values.

Vibration Control of Flexible Structures by using Conveying Fluid Pipe (유동유체가 흐르는 파이프에 의한 유연 구조물의 진동제어)

  • 류시웅;김건희;공창덕;오경원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.25-31
    • /
    • 2004
  • This paper describes a new vibration-suppression technique for flexible cantilevered structures by using a pipe containing an internal flow. The stability and dynamic response are analyzed based on the finite element method. The flutter limit and optimum stabilizing fluid velocity are determined in root locus diagrams. The impulse responses of the system are studied by the mode superposition method to observe the damping rate of the motion. The stabilizing effect of an internal flow is demonstrated by impulse responses of the structures with and without an material damping. It is found that the response of the pipe with flow of liquid has a larger effect of, stabilizing than that with flow of gas.