• Title/Summary/Keyword: Impulse response model

Search Result 307, Processing Time 0.026 seconds

Inelastic two-degree-of-freedom model for roof frame under airblast loading

  • Park, Jong Yil;Krauthammer, Theodor
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.321-335
    • /
    • 2009
  • When a roof frame is subjected to the airblast loading, the conventional way to analyze the damage of the frame or design the frame is to use single degree of freedom (SDOF) model. Although a roof frame consists of beams and girders, a typical SDOF analysis can be conducted only separately for each component. Thus, the rigid body motion of beams by deflections of supporting girders can not be easily considered. Neglecting the beam-girder interaction in the SDOF analysis may cause serious inaccuracies in the response values in both Pressure-Impulse curve (P-I) and Charge Weight-Standoff Diagrams (CWSD). In this paper, an inelastic two degrees of freedom (TDOF) model is developed, based on force equilibrium equations, to consider beam-girder interaction, and to assess if the modified SDOF analysis can be a reasonable design approach.

On the Analysis of Dynamic Characteristics of Pipe Supporting Hydraulic Snubber in Electric Power Plant with State-space Model and Impulse Testing (상태공간 모델과 임펄스 시험에 의한 발전소 배관지지용 유압완충기의 동특성 해석)

  • Lee, Jae-Cheon;Hwang, Tae-Yeong
    • 연구논문집
    • /
    • s.31
    • /
    • pp.89-99
    • /
    • 2001
  • This paper presents the modeling and analysis of dynamic characteristics of hydraulic snubber in electric power plant. The nonlinear state-space model of 14th order to describe the dynamics of the snubber was established by Simulink. The simulation results show that the hydraulic snubber reacts as like the conventional shock absolvers against the high pulse shock load. The snubber also shows the peculiar characteristics to the small step load, which temporarily lock the control valves up, however maintain same steady-state pressures of all internal chambers in the long run. Two case studies for the analysis of the snubber are addressed. Practical pulse testing method was also proposed to identify the frequency response of the snubber.

  • PDF

Modeling of Time Delay Systems using Exponential Analysis Method

  • Iwai, Zenta;Mizumoto, Ikuro;Kumon, Makoto;Torigoe, Ippei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2298-2303
    • /
    • 2003
  • In this paper, very simple methods based on the exponential analysis are presented by which transfer function models for processes can easily be obtained. These methods employ step responses or impulse responses of the processes. These can also give a more precise transfer function model compared to the well-known graphical methods. Transfer functions are determined based on Prony method, which is one of the oldest and the most representative methods in the exponential analysis. Here, the method is reformed and applied to obtain the so-called low-order transfer function with pure time delay from the data of the step response. The effectiveness of the proposed method is examined through several numerical examples and experiments of the 2-tank level control process.

  • PDF

Indoor Temperature Estimation System for Reduction of Building Energy Consumption (건물 에너지 절감을 위한 실내 온도 추정 시스템)

  • Kim, Jeong-Hoon;You, Sung Hyun;Lee, Sang Su;Kim, Kwan-Soo;Ahn, Choon-Ki
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.885-888
    • /
    • 2017
  • In this paper, a new strategy for estimating building temperature based on the modified resistance capacitance (R - C) network thermal dynamic model is proposed. The proposed method gives accurate indoor temperature estimation using minimum variance finite impulse response filter. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed.

Impact of Structural Shock and Estimation of Dynamic Response between Variables (구조적 충격의 영향과 동적 반응의 추정)

  • Cho, Eun-Jung;Kim, Tae-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.799-807
    • /
    • 2011
  • This study investigates long and short run responses of variables to exogenous shocks by imposing prior restrictions on a contemporaneous structural shock coefficient matrix of the model to identify shocks by endogenous variables in the vector autoregression. The relative importance of each structural shock in variation of each variable is calculated through the identification of proper restrictions (not based on any specific theory but on researcher judgment corresponding to actual situations) and an estimation of the structural vector autoregression. The results of the analyses are found to maintain consistency.

Improved DMC for the integrating process (적분 공정 제어를 위한 향상된 DMC)

  • 강병삼;한종훈;장근수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1120-1123
    • /
    • 1996
  • DMC(Dynamic Matrix Control) algorithm has been successfully used in industries for more than a decade. It can handle constraints and easily extended to MIMO case. The application of DMC, however, is limited to the open loop stable process because it uses the FIR(Finite Impulse Response) or FSR(Finite Step Response) model. Integrating process widely used in chemical process industry, is the representative open loop unstable process. The disturbance rejection of DMC is relatively poor due to the assumption that the current disturbance is equivalent to the future disturbance. We propose the IDMC(Improved Dynamic Matrix Control) for the integrating process, as well as non-integrating process. IDMC has shown better disturbance rejection using multi-step ahead predictor for the disturbance.

  • PDF

A Study of Parameter Estimation for First Order System with Dead Time (지연요소를 수반하는 일차계통의 패러미터 추정에 관한 연구)

  • Joo Shik Ha
    • 전기의세계
    • /
    • v.18 no.1
    • /
    • pp.15-23
    • /
    • 1969
  • A lot of recent researches have shown that a Pseudo Random Binary Signal is a quite effective test signal to measure the impulse response of a plant. Generally speaking, however, such a response itself is not satisfactory to determine the appropriate control parameters or control inputs. Here, the author intends to estimate the unknown parameters of the First Order Plant with Dead Time by means of correlation method using M-sequence signal. The time constant T and the dead time L of the plant are eatimated with one tracking loop by automatically adjusting delay time .tau. of M-sequence signal according to variations of T and L. In this paper, a three level M-sequence signal is used as a test signal in order to avoid troublesome operations to calculate partial derivatives of a given performance index with respect to the parameters which are usually required in the Model Method. Several experiments with analogue computer using low pass filters as averaging circuits showed good results as expected.

  • PDF

Structural analysis based on multiresolution blind system identification algorithm

  • Too, Gee-Pinn James;Wang, Chih-Chung Kenny;Chao, Rumin
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.819-828
    • /
    • 2004
  • A new process for estimating the natural frequency and the corresponding damping ratio in large structures is discussed. In a practical situation, it is very difficult to analyze large structures precisely because they are too complex to model using the finite element method and too heavy to excite using the exciting force method; in particular, the measured signals are seriously influenced by ambient noise. In order to identify the structural impulse response associated with the information of natural frequency and the corresponding damping ratio in large structures, the analysis process, a so-called "multiresolution blind system identification algorithm" which combines Mallat algorithm and the bicepstrum method. High time-frequency concentration is attained and the phase information is kept. The experimental result has demonstrated that the new analysis process exploiting the natural frequency and the corresponding damping ratio of structural response are useful tools in structural analysis application.

A Study on the Sloshing Impact Response Analysis for the Insulation System of Membrane Type LNG Cargo Containment System (LNG 탱크 방열구조의 슬로싱 충격 응답 해석법에 관한 연구)

  • Nho, In-Sik;Ki, Min-Seok;Lee, Jae-Man;Kim, Sung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.531-538
    • /
    • 2011
  • To ensure the structural integrity of membrane type LNG tank, the rational assessment of impact pressure and structural responses due to sloshing should be preceded. The sloshing impact pressures acting on the insulation system of LNG tank are typical irregular loads and the structural responses caused by them also very complex behaviors including fluid structure interaction. So it is not easy to estimate them accurately and huge time consuming process would be necessary. In this research, a simplified method to analyze the dynamic structural responses of LNG tank insulation system under pressure time histories obtained by sloshing model test or numerical analysis was proposed. This technique basically based on the concept of linear combination of the triangular response functions which are obtained by the transient response analysis under the unit triangular impact pressure acting on structures in time domain. The validity of suggested method was verified through the example calculations and applied to the structural analysis of real Mark III type insulation system using the sloshing impact pressure time histories obtained by model test.

  • PDF

Frequency domain elastic full waveform inversion using the new pseudo-Hessian matrix: elastic Marmousi-2 synthetic test (향상된 슈도-헤시안 행렬을 이용한 탄성파 완전 파형역산)

  • Choi, Yun-Seok;Shin, Chang-Soo;Min, Dong-Joo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.329-336
    • /
    • 2007
  • For scaling of the gradient of misfit function, we develop a new pseudo-Hessian matrix constructed by combining amplitude field and pseudo-Hessian matrix. Since pseudo- Hessian matrix neglects the calculation of the zero-lag auto-correlation of impulse responses in the approximate Hessian matrix, the pseudo-Hessian matrix has a limitation to scale the gradient of misfit function compared to the approximate Hessian matrix. To validate the new pseudo- Hessian matrix, we perform frequency-domain elastic full waveform inversion using this Hessian matrix. By synthetic experiments, we show that the new pseudo-Hessian matrix can give better convergence to the true model than the old one does. Furthermore, since the amplitude fields are intrinsically obtained in forward modeling procedure, we do not have to pay any extra cost to compute the new pseudo-Hessian. We think that the new pseudo-Hessian matrix can be used as an alternative of the approximate Hessian matrix of the Gauss-Newton method.

  • PDF