• Title/Summary/Keyword: Impulse performance

Search Result 780, Processing Time 0.026 seconds

Experimental Investigation of the Effect of Partial Admission Ratio on the Performance of Supersonic Impulse Turbine (초음속 충동형 축류터빈의 부분분사비 효과에 대한 실험적 연구)

  • Jeong, Eun-Hwan;Park, Pyun-Goo;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.59-66
    • /
    • 2007
  • In this paper, experimental investigation results of the effect of partial admission ratio on the performance of axial turbine was presented. A supersonic impulse turbine of gas generator cycle liquid rocket engine turbopump was used for the test. for experimental purpose, a nozzle block, in which total 14 number of axi-symmetric convergent-divergent nozzles are arranged circumferentially, was designed and manufactured. Partial admission ratio was controlled by changing the number of active nozzles. High pressure air was used as working medium for the test. The experimental result revealed that the performance of the supersonic impulse turbine does not much affected by the partial admission ratio for supersonic impulse turbine.

Evaluation of Specific Impulse for Liquid Rocket Engine Adopting Gas Generator Cycle (가스발생기 사이클 액체로켓엔진의 비추력 평가)

  • Cho, Won-Kook;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.93-97
    • /
    • 2010
  • The analysis of specific impulse of the liquid rocket engine employing gas generator cycle with LOx/kerosene as propellant has been performed. The relative error of performance of 300 ton level engine is 0.1%s for specific impulse and 12% for optimal combustion pressure comparing with the published data. The difference of the performance model and the material property models of gas generator product gas are the presumed major reason of discrepancy. The optimal condition of 30 ton level engine is combustion pressure of 68 bar and mixture ratio of 2.2 for maximum specific impulse. This optimal condition can be changed by performance models.

Performance Prediction of Impulse Turbine System in Various Operating Conditions

  • Hyun, Beom-Soo;Moon, Jae-Seung;Hong, Key-Yong;Hong, Seok-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.9-17
    • /
    • 2007
  • This paper deals with the design and analysis of a 250kW class impulse turbine for wave energy conversion. Numerical analysis was performed using FLUENT. The size and the performance of a turbine required to provide a certain power can be estimated using a series of performance charts built through the present study. Temporal and spatial variations of flaw fields were also considered and compared with those of uniform inflow. It was concluded that a simple steady-flow analysis using performance charts still provided a practical and useful way to predict the design and performance of turbines.

Turbine Performance Experiments for the Turbopump of a Liquid Rocket Engine

  • Lee, Hanggi;Shin, Juhyun;Jeong, Eunhwan;Choi, Changho
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.25-29
    • /
    • 2016
  • This paper highlights the performance of an impulse turbine which is a part of turbopump in a liquid rocket first stage engine. The turbopump, currently under development at Korea Aerospace Research Institute, has an impulse type turbine with 12 nozzles and a single rotor. The impulse turbine can archive high specific power with the low gas flow rates. The supersonic impulse turbine with a single rotor can make a simple structure. High-pressure gases are converted into the dynamic energy with flows through the 12 nozzles and drive the rotor to make the power for the pumps. The turbine test was performed in the high-pressured turbine test facility with air gas instead of burned gas. A hydraulic dynamometer was used to absorb the power from the turbine and control the rotational speed and torque. The test points were at several pressure ratios with 7 different rotational speeds. Results showed the efficiency was highest at the design pressure ratio. The efficiency was insensitive to the pressure ratio variation than the rotational speed. It was a typical characteristic in an impulse turbine.

An Experimental Study on the Propagation Characteristics and Reduction of Impulse Noises from a High Voltage COS Fuse (고전압 COS 퓨즈로부터 방사된 충격성 소음의 전파특성과 저감에 관한 실험적 연구)

  • Song, Hwa-Young;Ju, Kyung-Min;Lee, Dong-Hoon;Kang, Rae-Goog;Jung, Nak-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.71-74
    • /
    • 2005
  • This experimental study describes the propagation characteristics and reduction of impulse noises emitted from a high voltage COS(Cut Out Switch) fuse of a transformer. When a high voltage COS fuse becomes a short circuit by the over current. The peak sound Pressure above 150dB(A) is generated. In this study, an impulse noise generator is designed for generating the impulse noises similar to the noise level of COS fuse, which is utilized to test the noise reduction of a reactive silencer. The reactive silencers have been tested for 10 different types with each different porosity, hole diameter and length. From the experimental results, it is found that the reactive silencer has an excellent performance to greatly suppress the impulse noise and that its performance is closely connected with the porosity and hole diameter.

  • PDF

New Learning Hybrid Model for Room Impulse Response Functions (새로운 학습 하이브리드 실내 충격 응답 모델)

  • Shin, Min-Cheol;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.23-27
    • /
    • 2007
  • Many trials have been used to model room impulse responses, all attempting to provide efficient representations of room acoustics. The traditional model designs for room impulse response seem to fail in accuracy, controllability, or computational efficiency. In time domain, a room impulse response is generally considered as the combination of three parts having different acoustic characteristics, initial time delay, early reflection, and late reverberation. This paper introduces new learning hybrid model for the room impulse response. In this proposed model, those three parts are modeled using different models with learning algorithms that determine the length or boundary of each model in the hybrid model. By the simulation with measured room impulse responses, it was examined that the performance of proposed model shows the best efficiency in views of both the parameter numbers and modeling error.

  • PDF

New Learning Hybrid Model for Room Impulse Response Functions (새로운 학습 하이브리드 실내 충격 응답 모델)

  • Shin, Min-Cheol;Wang, Se-Myung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.361-367
    • /
    • 2008
  • Many trials have been used to model room impulse responses, all attempting to provide efficient representations of room acoustics. The traditional model designs for room impulse response seem to fail in accuracy, controllability, or computational efficiency. In the time domain, room impulse responses are generally considered as combination of the three Parts having different acoustic characteristics, initial time delay, early reflection, and late reverberation. This paper introduces new learning hybrid model for room impulse responses. In this proposed model, those three parts are modeled using different models with learning algorithms that determine the boundary of each model in the hybrid model. By the simulation with measured room impulse responses, the performance of proposed model shows the best efficiency in views of computational burden and modeling error.

An Experimental Study on the Impulse Wave Discharged from the Exit of a Perforated Pipe (다공관 출구로부터 방출되는 펄스파에 관한 실험적 연구)

  • 허성욱;이동훈;김희동
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.67-71
    • /
    • 2003
  • The propagation characteristics of the impulse wave discharged from the exit of a perforated pipe is investigated through a simple shock tube facility. The pressure histories and directivities of the impulse wave propagating outside from the exit of pipe with several different configurations are analyzed for the range of the incident weak shock wave Mach number between 1.02 and 1.2. In the shock tube experiments, the impulse wave are visualized by a Schlieren optical system for the purpose of understanding its propagation characteristics. The experimental results show that for the near sound field the impulse noise strongly propagates toward to the pipe axis, but for the far sound field the impulse noise uniformly propagates toward to the omnidirections, indicating that the directivity pattern is almost same regardless of the pipe type. Especially, it is shown that the perforated pipe has a little performance to reduce the impulse noise only for the near sound field

  • PDF

Effective Impulse Impedances of Deeply Driven Grounding Electrodes

  • Lee, Bok-Hee;Jeong, Dong-Cheol;Lee, Su-Bong;Chang, Keun-Chul
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.207-214
    • /
    • 2004
  • This paper presents the characteristics of transient and effective impulse impedances for deeply driven grounding electrodes used in soil with high resistivity or in downtown areas. The laboratory test associated with the time domain performance of grounding piles subjected to a lightning stroke current has been carried out using an actual-sized model grounding system. The ground impedances of the deeply driven ground rods and grounding pile under impulse currents showed inductive characteristics, and the effective impulse ground impedance owing to the inductive component is higher than the power frequency ground impedance. Both power frequency ground impedance and effective impulse ground impedance decrease upon increasing the length of the model grounding electrodes. Furthermore, the effective impulse ground impedances of the deeply driven grounding electrodes are significantly amplified in impulse currents with a rapid rise time. The reduction of the power frequency ground impedance is decisive to improve the impulse impedance characteristics of grounding systems.

Numerical and Experimental Investigation on the Supersonic Impulse Turbine Design Performance Estimation Methodology (초음속 충동형 터빈의 설계성능 검증방법에 대한 해석 및 시험적 고찰)

  • Jeong, Eun-Hwan;Park, Pyun-Goo;Lee, Hang-Gi;Kim, Jin-Sun;Kim, Dae-Jin;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.7-14
    • /
    • 2009
  • A methodology of design performance estimation for the supersonic impulse turbine was investigated. Relations of similarity condition and test nozzle area ratio were derived. Comparison of efficiencies between the turbines with real nozzle and test nozzle are made numerically and experimentally. The CFD results and test result confirmed that the turbine with test nozzle was able to predict real turbine performance. In addition, design performance of the supersonic impulse turbine also could be estimated using real nozzle in air-medium test. In this case, design efficiency was found at the pressure-ratio and velocity-ratio of similarity condition of test nozzle.