• Title/Summary/Keyword: Impulse antenna

Search Result 60, Processing Time 0.021 seconds

Performance Evaluation of Antipodal Vivaldi Antenna in the Time- and Frequency-Domains for IR-UWB Systems Application (IR-UWB 시스템 응용을 위한 시간- 및 주파수-영역에서의 앤티포달 비발디 안테나 성능 평가)

  • Koh, Young-Mok;Kim, Keun-Yong;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.159-168
    • /
    • 2012
  • In this paper, we designed the antipodal vivaldi antenna for IR-UWB systems application and evaluated IR-UWB antenna performance for the ultra wideband impulse signal transmission in the time- and frequency-domain. The designed antipodal vivaldi antenna was fabricated using FR-4 substrate which thickness 1.6 mm, dielectric constant ${\epsilon}_r=4.7$ and $tan{\delta}=0.002$. We measured the return loss, far filed radiation pattern at the anechoic chamber in the frequency-domain. We also performed the pulse fidelity analysis in the time-domain using nano-second impulse signal transmission and demonstrated the feasibility of ultra wideband signal stable transmission in the UWB band. The designed and fabricated antipodal vivaldi antenna could be emitting and receiving the IR-UWB signal while preserving low pulse distortion and good radiation pattern in time- and frequency-domain.

Design of a broadband bow-tie antenna (광대역 나비형 안테나 설계)

  • 이상훈;김민준
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.210-213
    • /
    • 2001
  • In this paper, we analyzed the impedance characteristic of the bow-tie antenna for the broadband operation. The pulsed subsurface radar uses the impulse to collect information for subsurface objects, so the broadband antenna is used to minimize reflections in the feed point for the broadband characteristic of impulse. Therefore, in this paper we analyzed the broadband bow-tie antenna with Ensemble 5.0.

  • PDF

Implementation of Impulse Radar System in Time Domain within Laboratory Unit (시영역에서 임펄스 레이더 시스템의 실험적 구현)

  • Doojin Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.2
    • /
    • pp.93-98
    • /
    • 2024
  • This paper presents the method to extract the ultrawide-band (UWB) signal and proposes the simple impulse radar system for sensing real-based target within close-range area. The proposed impulse radar system consists of impulse generator, ultrawide-band antennas, function generator, and digital oscilloscope. It is verified by experiment that a differentiated Gaussian pulse is generated with 200ps of pulse width and corresponding spectrum from 0.3 to 4.7 GHz once a sinusoidal wave with 10MHz is excited. The Gaussian doublet is received by identical antennas and it is shown that the UWB pule width of 328ps and its spectrum is from 0.9 to 4.4 GHz. It is confirmed that the UWB pulse is extracted when the real-based targets such as circular target with 4cm radius and corner reflector are placed at the close-range area.

Study on Folded TEM Horn Antennas for 70 kV Impulse (70 kV 임펄스용 접힌 TEM 혼 안테나에 관한 연구)

  • Lee, Jin-Seong;Byun, Joon-Ho;Ahn, Young-Joon;Lee, Byung-Je
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.3
    • /
    • pp.95-100
    • /
    • 2007
  • In this paper, a twice folded TEM horn antenna for 70 kV impulse high power system is proposed. The length reduction of 50 % is achieved by folding a conventional TEM horn antenna twice. The array elements are fed by the stripline power divider using the Chebyshev transformer. The power divider feeds four TEM horn antenna elements with an in-phased uniform power, and it covers a wide bandwidth ($150\;MHz\;{\sim}\;768\;MHz$, VSWR<2.0). Considering the air breakdown at peak 70 kV impulse, the proposed antenna maintains the 25 mm gaps between conducting plates. The dimension of the twice folded horn antenna is $1730\;{\times}\;1600\;{\times}\;300$ (mm3), and the operating frequency is from 152 MHz to 750 MHz under 10 dB return loss. The peak gains are measured from 6.77 dBi to 10.70 dBi at $400\;MHz\;{\sim}\;750\;MHz$.

  • PDF

Multi-Antenna Noncoherent ML Synchronization for UWB-IR Faded Channels

  • Baccarelli Enzo;Biagi Mauro;Pelizzoni Cristian;Cordeschi Nicola
    • Journal of Communications and Networks
    • /
    • v.8 no.2
    • /
    • pp.194-204
    • /
    • 2006
  • This contribution focuses on the maximum likelihood (ML) noncoherent synchronization of multi-antenna transceivers working in faded environments and employing ultra-wideband impulse radio (UWB-IR) transmit technology. In particular, the Cramer-Rao bound (CRB) is derived for the general case of multiple input multiple output (MIMO) UWB-IR systems and used to compare the ultimate performance of three basic transmit schemes, thereinafter referred to as single input multiple output (SIMO), MIMO equal signaling (MIMO-ES), and MIMO orthogonal signaling (MIMO-OS) ones. Thus, the noncoherent ML synchronizer is developed for the better performing transmit scheme (i.e., the SIMO one) and its performance is evaluated under both signal acquisition and tracking operating conditions. The performance gain in the synchronization of UWB- IR signals arising by the utilization of the multi-antenna technology is also evaluated.

A Compensation Technique for Dispersive and Resonant Wideband Antenna using Stable Minimum-Phase ARMA System Modeling for Coherent Impulse Communication Systems (안정성을 갖는 최소 위상 ARMA 시스템 모델링을 이용한 코히어런트 임펄스 통신 시스템의 광대역 안테나 확산 및 공진 특성 보상 기법)

  • Lee Won-Cheol;Park Woon-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.983-995
    • /
    • 2004
  • This paper introduces a pre-compensation filter for compensating dispersive and resonant properties experienced along the usage of non-ideal wideband antennas in impulse communication systems. It has been well blown that the transmitted impulse signal becomes deformed because of dispersive and resonant characteristics. Accordingly, in spite of using ideal template signal at the correlator in coherent receiver, these impairments degrade overall performance attributed to low level of coherence. To overcome this problem this paper exploits a realization technique of pre-compensation filter purposely installed at transmitter whose stability is automatically guaranteed because it has an inversion form of minimum-phase ARMA (Auto-Regressive Moving Average) system. The performance of proposed scheme will be shown in results from computer simulations to verify its affirmative impact on impulse communication system with regarding several distinctively shaped antennas.

A Study on Design and Fabrication of SRD Impulse Generator and Antenna for Ground Penetrating Radar System (지반투과 레이더 시스템을 위한 SRD 임펄스 발생기 및 안테나의 설계 및 제작에 관한 연구)

  • Kim, Hyoung-Jong;Shin, Suk-Woo;Choi, Gil-Wong;Choi, Jin-Joo;Shin, Shang-Youal
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.509-516
    • /
    • 2011
  • In this paper, a ground penetrating radar(GPR) system is implemented for landmine detection. The performance of the GPR system is associated with the characteristics of local soil and buried target. The choice of the center frequency and the bandwidth of the GPR system are the key factors in the GPR system design. To detect a small and shallow target, the higher frequencies are needed for high depth resolution. We have been designed, fabricated and tested a new impulse generator using step recovery diodes. The measured impulse response has an amplitude of 6.2V and a pulse width of 250ps. The implemented GPR system has been tested real environmental conditions and has proved its ability to detect a small buried target.

On Performance Evaluation of MIMO Antennas through Channel Sounding (채널사운딩을 통한 다중안테나의 성능평가)

  • Kang, Young-Yun;Cho, Joon-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.12-13
    • /
    • 2008
  • In this paper, we propose a performance evaluation method for MIMO antennas through channel sounding. From measurement data, the complex channel gain, delay, angle of arrival, and angle of departure of each multipath are estimated. Using these estimates, the MIMO channel impulse response adopting various types of antennas are constructed by replacing the array response vectors, considering antenna patterns and correlation among antenna elements. Comparisons are made in terms of the metrics computed from the impulse responses.

  • PDF

Analysis of Antenna Impact on Wide-band Indoor Radio Channel and Measurement Results at 1 GHz, 5.5 GHz, 10 GHz and 18 GHz

  • Santella, Giovanni
    • Journal of Communications and Networks
    • /
    • v.1 no.3
    • /
    • pp.166-181
    • /
    • 1999
  • The object of this paper is to investigate the influence of antenna pattern on indoor radio channel characteristics. Different from previous works where this analysis was carried out at a fixed frequency using different antennas, in the present paper (where measurements were taken in a wide frequency range) the variation of the radiation pattern was caused by two factors: the change of the radiation pattern when the same antenna was used at different frequenicies and the use of different type of antennas. To carry out this analysis, frequency domain measurements of the indoor radio channel at 1 GHz, 5.5 GHz, 10 GHz and 18 GHz were collected. Measurements were taken using a network analyzer. Serveral re-alizations of the channel transfer function were obtained varying, for each measurement, the positon of the transmitter and keep-ing the receiver fixed. Estimate of the channel impulse response was obtained from the Inverse Fourier Transform (IFT) of the fre-quency response. The measurements were performed in an office enviroment with mostly metallic walls and inner separations. The obtained data were elaborated to obtain the power versus distance relationship, the Cummulative Distribution Functions(CDFs) of rms Delay Spread(DS) and of the 3 dB frequency correlation band-width. Finally, the 3 dB width of the frequency correlation func-tion has been empirically related to the inverse of the rms DS of the impulse response.

  • PDF

Analysis of 60 GHz Band Indor Wireless Channels with Channel Configurations

  • Ji-Hoon Park;Yun
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.30-33
    • /
    • 1998
  • In this paper, 60 GHz indoor broadband wireless channels are measured with various configurations in a typical coffice environment. Mesurements are taken at nine positions of the room and the base-station antenna is placed either at the center or at an edge of the measurement room, and the remote-station antenna is either sharp beam or broad beam type. The rms delay spread(RDS) and normalized received power (NRP) are estimated from the measurements. Bit error rate simulations are performed using impulse responses for two measurement positions with QPSK/DQPSK OFDM modulation. Using sharp beam antenna results in superior performances than using broad beam antenna in terms of both bit error rates (BER) and NRP penalty. Also, placing the bese-station antenna at the center is superior to placing it at an edge in terms of BER and NRP.

  • PDF