• Title/Summary/Keyword: Impulse Current

Search Result 371, Processing Time 0.022 seconds

The Protective Countermeasure of Water Purifier PCB according to Abnormal Voltage (이상전압에 따른 정수기 PCB의 보호대책)

  • Kim, Dong-Ook;Moon, Hyun-Wook;Lee, Ki-Yeon;Kim, Hyang-Kon;Choi, Chung-Seog
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.64-70
    • /
    • 2007
  • The electrical accident results from an insulation blackdown by over-voltage, an overheating by the excess of allowable current, a deterioration performance by the passage of time, and so on. This paper discusses how to improve the power control system of PCB in water purifier. The protecting device of present power supply control system in water purifier is composed of the varistor device which acts only for impulse-type surges. So the present system can not be protected others except the surge of impulse-type. The newly-suggested power control system in this paper is designed to protect the system by disconnecting power supply through SSR(Solid State Relay) if the value of input voltage is exceeded the setting value.

Analysis of Transient Response Behavior and Frequency-Dependent Ground Impedances of the Carbon Ground Electrodes (탄소접지극 접지임피던스의 주파수의존성과 과도응답특성의 해석)

  • Lee, Bok-Hee;Lee, Kang-Soo;Kim, You-Ha;Um, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.54-61
    • /
    • 2013
  • This paper presents transient response behavior and frequency-dependent ground impedance of a single carbon ground electrode. The ground impedance of the carbon ground electrode was measured as a function of frequency of injected currents and simulated by using the distributed parameter circuit model with due regard to the frequency-dependent soil parameters, and the transient response behavior of the carbon ground electrode against impulse currents were investigated. As a consequence, the frequency-dependent ground impedance of the carbon ground electrode showed the capacitive behavior, that is, the ground impedance decreases with increasing the frequency of injected currents and lowers at the fast front time of impulse current. It was found that the carbon ground electrode is effective in grounding system for lightning protection. The ground impedance simulated with due regard to the frequency-dependent soil parameters was in good agreement with the measured data. The adequacy of the simulation technique and the distributed parameter circuit model for the carbon ground electrode was verified. It is expected that the simulation methodology, which analyzes the frequency-dependent ground impedance of the carbon ground electrode proposed in this work, can be used in the design of a grounding system for protection against lightning.

A study on the Microstructure and electrical characteristics of ZnO varistors for arrester (피뢰기용 ZnO 바리스터 소자의 미세구조 및 전기적 특성에 관한 연구)

  • 김석수;조한구;박태곤;박춘현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.489-494
    • /
    • 2001
  • In this thesis, the microstructure and electrical properties of ZnO varistors were investigated according to ZnO varistors with various formulation. A∼E's ZnO varistor ceramics were exhibited good density, 95% of theory density and low porosity, 5%, wholly. The average grain size of A-E's ZnO varistor ceramics exhibited 11.89$\mu\textrm{m}$, 13.57$\mu\textrm{m}$, 15.44$\mu\textrm{m}$, 11.92$\mu\textrm{m}$, 12.47$\mu\textrm{m}$, respectively. Grain size of C's ZnO varistor is larger and grain size of A and D's are smaller than other varistors. In the microstructure, A∼E's ZnO varistor ceramics sintered at l130$^{\circ}C$ was consisted of ZnO grain(ZnO), spinel phase(Zn$\sub$2.33/Sb$\sub$0.67/O$_4$), Bi-rich Phase(Bi$_2$O$_3$) and inergranular phase, wholly. Reference voltage of A∼E's ZnO varistor sintered at 1130$^{\circ}C$ decreased in order D, E > A > B > C's ZnO varistors. Nonlinear exponent of varistors exhibited high characteristics, above 30, wholly. Consequently, C's ZnO varistor exhibited good nonlinear exponent, 68. Lightning impulse residual voltage of A, B, C and E's ZnO varistors suited standard characteristics, below 12kV at current of 5kA.

  • PDF

A Design of Non-Coherent CMOS IR-UWB Receiver (비동기식 CMOS IR-UWB 수신기의 설계 및 제작)

  • Ha, Min-Cheol;Park, Young-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.1045-1050
    • /
    • 2008
  • In this paper presents a CMOS RF receiver for IR-UWB wireless communications is presented. The impulse radio based UWB receiver adopts the non-coherent demodulation that simplifies the receiver architecture and reduces power consumption. The IR-UWB receiver consists of LNA, envelop detector, VGA, and comparator and the receiver including envelope detector, VGA, and comparator is fabricated on a single chip using $0.18{\mu}m$ CMOS technology. The measured sensitivity of IR-UWB receiver is down to -70 dBm and the BER $10^{-3}$, respectively at data rate 1 Mbps. The current consumption of IR-UWB receiver except external LNA is 5 mA at 1.8 V.

Reduction of the the Ground Surface Potential Gradients by Installing Auxiliary Grounding Grids (보조접지그리드의 시설에 의한 대지표면전위경도의 저감)

  • 이승칠;엄주홍;이복희;김효진
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.121-129
    • /
    • 2002
  • The present paper describes a technique for installing an effective grounding grids, the major objective is forced on the experimental evaluation of the performance and characteristics with the arrangement and installation method for grounding grids consisting of the means to protect electric shock, electronics and computerized facilities against lightning, switching and ground fault surges. The study is oriented on two major areas: (1) the analysis of the ground surface potential gradient with the arrangement of grounding grids, (2) the control of the dangerous ground surface potential rise. The experiments wee carried out with the impulse currents as a function of the installation method or arrangement of grounding grids. An installation method of the inclined auxiliary grounding grid was proposed to overcome the drawbacks of equally spared grounding grids, i.e. an appropriate design concept far the installation of grounding grids was found out, It has been shown that the installation of the intwined auxiliary grounding grid can also result in a mere than 50% decrease in the maximum potential gradient on the ground surface and enhance the level of safety for persons and electronic equipments..

A 3~5 GHz Interferer Robust IR-UWB RF Transceiver for Data Communication and RTLS Applications (간섭 신호에 강인한 특성을 갖는 데이터 통신과 위치 인식 시스템을 위한 3~5 GHz 대역의 IR-UWB RF 송수신기)

  • Ha, Jong Ok;Park, Myung Chul;Jung, Seung Hwan;Eo, Yun Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.70-75
    • /
    • 2014
  • This paper presents a IR-UWB(Impulse Radio Ultra-Wide Band) transceiver circuit for data communication and real time location system. The UWB receiver is designed to OOK(On-Off Keying) modulation for energy detection. The UWB pulse generator is designed by digital logic. And the Gaussian filter is adopted to reject side lobe in transmitter. The measured sensitivity of the receiver is -65 dBm at 4 GHz with 1 Mbps PRF(Pulse Repetition Frequency). And the measured energy efficiency per pulse is 20.6 pJ/bit. The current consumption of the receiver and transmitter including DA is 27.5 mA and 25.5 mA, respectively, at 1.8 V supply.

Performance Characteristics of a Coaxial Pulsed Plasma Thruster with Teflon Cavity

  • Edamitsu, Toshiaki;Tahara, Hirokazu;Yoshikawa, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.577-587
    • /
    • 2004
  • A coaxial pulsed plasma thruster (PPT) with a Teflon cavity was designed, and its performance characteristics were examined varying stored energy, cavity length and capacitance. The PPT was tested as the entire system including the discharge circuit, and the results were explained with both the transfer efficiency and the acceleration efficiency. The transfer efficiency is defined as the fraction of energy in capacitors supplied into plasma, and the acceleration efficiency as the fraction of energy supplied into plasma converted to thrust energy. To estimate these efficiencies, the equivalent plasma resistance was defined and calculated using energy conservation during discharge. The equivalent plasma resistance proportionally increased with cavity length, and therefore the current peak increased with decreasing cavity length. The energy density calculated by the transfer efficiency was increased with decreasing cavity length. As a result, higher acceleration efficiency and lower transfer efficiency were obtained with shorter cavity length. Accordingly, there was an optimal cavity length for the thrust efficiency. The specific impulse and the impulse bit per unit stored energy ranged from 390 s and 50 $\mu$ Ns/J for a cavity length of 34 mm to 825 s and 11 $\mu$ Ns/J for a cavity length of 4 mm when the stored energy was fixed to 21.4J. Thus, it was showed that the performance of this PPT approached that of electromagnetic-acceleration-type PPT with decreasing cavity length. The PPT achieved thrust efficiencies of 10-12% at 21.4 J and 6-7% at 5.35 J at cavity lengths between 14 mm and 29 mm.

  • PDF

Discharge Characteristics between Needle and Plane Electrodes in Water under Impulse Voltages (임펄스전압에 의한 침 대 평판전극에서 수중방전특성)

  • Choi, Jong-Hyuk;Park, Geon-Hun;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.67-74
    • /
    • 2008
  • In this paper we describe discharge characteristics between needle-to-plane electrodes in water in various conditions such as different impulse voltages, polarities and water resistivities. Streamer corona is initiated at the tip of needle electrode and propagates toward plane electrode, and it experiences the final jump across the test gap. The branched channels of streamer coronas for lower water resistivities are much thicker and brighter than those for higher water resistivities at the same level of applied voltage. The negative streamer coronas not only have more branches but also widely spread out compared to the positive streamer coronas. A number of pulse-like currents ranging from some hundreds mA to a few A after streamer corona onset were produced with discharge developments. The time-lags-to breakdown for the positive polarity were remarkably shorter than those for the negative polarity. The pre-breakdown energy supplied into the test gap was inversely proportional to water resistivity.

The Electrical Insulation Characteristics of HTS SMES (초고온초전도 SMES의 절연특성)

  • Cheon, Hyeon-Gweon;Choi, Jae-Hyeong;Kim, Hae-Jong;Seong, Ki-Chul;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.623-626
    • /
    • 2005
  • Toward the practical applications, on operation of conduction-cooled HTS SMES at temperatures well below 77 K should be investigated, in order to take advantage of a greater critical current density of HTS and considerably reduce the size and weight of the system. Recently, research and development concerning application of the conduction-cooled HTS SMES that is easily movement are actively progressing in Korea. Electrical insulation under cryogenic temperature is a key and an important element in the application of this apparatus. Using multi wrapped copper by polyimide film for HIS SMES, the breakdown characteristics of models for turn-to-turn, that is surface contact model, were investigated under ac and impulse voltage at 77 K. A material that is Polyimide film (Kapton) 0.025 mm thickness is used for multi wrapping of the electrode. Statistical analysis of the results using Weibull distribution to examine the wrapping number effects on breakdown voltage under ac and impulse voltage in $LN_2$ was carried.

  • PDF

Transient Impedance Characteristics of Grounding Rods (봉상접지극의 과도임피던스 특성)

  • 김일권;송재용;길경석;권장우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.133-143
    • /
    • 2001
  • This paper describes the correlation of the transient impedance and its parameters with the stationary resistance of a grounding system to a square pulse current and a lightning impulse current. In the experiment, the grounding system consists of a single grounding rod$(\Psi10[mm], 1[m])$and/or a triple-grounding rods of equilateral triangles with 5[m] spacing for operation. To analyze the transient impedance characteristics of the grounding system, a pulse generator which can produce square wave of a 30[ns] rise-time and a $20[\mus] $pulse duration is designed and fabricated. The injected content in the grounding system and the developed potential were recorded, and the time variation of the transient impedance were calculated as the ratio of the potential rising to the injected current at each time. The transient impedance and the effective surge impedance Z3 which defines economic protection level in power system were quite higher than the stationary resistance. The grounding impedance is decreased by the application of the triple-rods grounding system, and its effect is decreased as the frequency of the current is increased due to the inductance of the grounding leads.

  • PDF