• Title/Summary/Keyword: Impulse Current

Search Result 370, Processing Time 0.031 seconds

Turn-to-Turn Dielectric Characteristics of Coils for HTSFCL (고온초전도 한류기용 코일의 턴간 절연 특성)

  • Baek, Seung-Myeong;Joung, Jong-Man;Lee, Chang-Hwa;Nguyen, Van Dung;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.15-18
    • /
    • 2003
  • Fault current limiters (FCL) are extensively needed to suppress fault currents, especially for trunk power systems heavily connected to high voltage/large current transmission lines. Due to its ideal electrical behavior, high-temperature superconductor fault current limiter (HTSFCL) becomes one of the most important developing trends of limiters in power system. This paper describes the result of an investigation of the dielectric characteristics of turn-to-turn insulation for pancake and solenoid type reactor coil in liquid nitrogen. The influence of thickness in a variety length, on AC, DC and impulse surface flashover has been investigated. Also, the relationships between the number of turn and breakdown characteristics were clarified. The information gathered in this test series should be helpful in the design of liquid nitrogen filled DC reactor type HTSFCL.

  • PDF

Insulation Design for a 13.2kV/630A High-Tc Superconducting Fault Current Limiter (13.2kV/630A급 고온초전도 한류기의 절연설계)

  • Kang, Hyoung-Ku;Lee, Chan-Joo;Ko, Tae-Kuk;Seok, Bok-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.941-942
    • /
    • 2007
  • The superconducting fault current limiter (SFCL) consists of superconducting coil for limiting the fault current and cryogenic cooling system for keeping the coil in superconducting condition. The study on the insulation design for superconducting coil and cryogenic cooling system should be elaborately performed to develop a high voltage SFCL. In this paper, insulation design of solenoid coil for 13.2kV/630A SFCL is performed through the AC dielectric breakdown test and lightning impulse dielectric strength test. The dependence of dielectric characteristics on the magnitude of liquid nitrogen pressure is also investigated. Through the investigation, it is verified that dielectric characteristics of sub-cooled nitrogen are strongly enhanced by the pressurization. The electrical insulation design of 13.2kV/630A SFCL is performed by applying the experimental results. The successful insulation design for development of 13.2kV/630A SFCL is confirmed by AC dielectric breakdown tests.

  • PDF

Energy Coordination between Cascaded Voltage Limiting Type SPDs in Surge Currents due to Direct Lightning Flashes (종속 접속된 전압제한형 SPD의 직격뢰 서지전류에 대한 에너지협조)

  • Lee, Bok-Hee;Um, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.68-75
    • /
    • 2014
  • Cascaded applications of surge protective devices(SPDs) are required in order to reduce the stress on the electrical and electronics equipment being protected, and the energy coordination between the cascaded SPDs is very important. This paper deals with the experimental results obtained from the installation conditions of full-scale SPDs. The energy coordination between the upstream Class I SPD and the downstream Class II SPD was measured using a $10/350{\mu}s$ impulse current due to direct lightning flashes. The distances between the cascaded SPDs were 3, 10, and 50m, and the maximum test current was 12.5kA. As a result, the energy sharing between cascaded SPDs was dependent on the voltage protection level of each SPD and the distance between two SPDs. An overview of how to select SPD ratings in applications of cascaded SPDs system was discussed based on the energy coordination between the two SPDs. The proposed test results for the energy coordination between two-stage cascaded SPDs can be used in effective applications of SPDs.

New Diagnostic Technique and Device for Lightning Arresters by Analyzing the Wave Height Distribution of Leakage Currents (누설전류의 파고분포 분석에 의한 새로운 피뢰기 진단기술 및 장치)

  • 길경석;한주섭;송재영;조한구;한문섭
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.562-567
    • /
    • 2003
  • Lightning arresters are deteriorated by repetition of protective operation against overvoltages or impulse currents in environments of its use. If a deteriorated arrester is left in power lines, it can lead to an accident such as a line to ground fault even in a normal system. Therefore, it is necessary to eliminate the deteriorated arrester in advance by checking the soundness of arresters on a regular basis, and to ensure the reliability of power systems by preventing accidents. Various deterioration diagnostic techniques and devices are suggested, and most of which measure leakage current components as an indicator of arrester ageing. However, the techniques based on the magnitude of leakage current measure simply RMS or peak value of leakage current components and do not provide detailed information needed in the diagnosis. In this study, we found that the wave height distributions of the total leakage currents are remarkably changed or a new wave height are produced with the progress of arrester deterioration. To propose a new technique for the diagnosis, we designed a leakage current detection unit and an analysis program which can measure leakage current magnitudes and analyze wave height distributions. From the experimental results, we confirmed that the proposed technique by analyzing the wave height distribution can simply diagnose the mode of defects such as a partial damage and an existence of punctures in arresters as well as deterioration of arresters.

Deterioration Characteristics and an On-Line Diagnostic Equipment for Surge Protective Devices (서지 보호기의 열화 특성과 온라인 진단장치)

  • Park, Kyoung-Soo;Wang, Guoming;Hwang, Seong-Cheol;Kim, Sun-Jae;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.635-640
    • /
    • 2016
  • This paper dealt with the deterioration characteristics and an on-line diagnosis equipment for SPDs (surge protective devices). An accelerated aging test was carried out using a $8/20{\mu}s$ standard lightning impulse current to analyze the changes of electrical characteristics and to propose the diagnostic parameters and the criterion for deterioration of ZnO varistor which is the core component of SPDs. Based on the experimental results, an on-line diagnosis equipment for SPD was fabricated, which can measure the total leakage current, reference and clamping voltage. The leakage current measurement circuit was designed using a low-noise amplifier and a clamp type ZCT. A linear controller, the leakage current measurement part and a HVDC were used in the measurement of reference voltage. The measurement circuit of clamping voltage consisted of a surge generator and a coupling circuit. In a calibration process, measurement error of the prototype equipment was less than 3%.

Failure Prediction of Metal Oxide Varistor Using Nonlinear Surge Look-up Table Based on Experimental Data

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.317-322
    • /
    • 2015
  • The metal oxide varistor (MOV) is a major component of the surge protection devices (SPDs) currently in use. The device is judged to be faulty when fatigue caused by the continuous inflow of lightning accumulates and reaches the damage limit. In many cases, induced lightning resulting from lightning strikes flows in to the device several times per second in succession. Therefore, the frequency or the rate at which the SPD is actually exposed to stress, called a surge, is outside the range of human perception. For this reason, the protective device should be replaced if it actually approaches the end of its life even though it is not faulty at present, currently no basis exists for making the judgment of remaining lifetime. Up to now, the life of an MOV has been predicted solely based on the number of inflow surges, irrespective of the magnitude of the surge current or the amount of energy that has flowed through the device. In this study, nonlinear data that shows the damage to an MOV depending on the count of surge and the amount of input current were collected through a high-voltage test. Then, a failure prediction algorithm was proposed by preparing a look-up table using the results of the test. The proposed method was experimentally verified using an impulse surge generator

A Study on the Reduction of Impulse Noise from a High Voltage Cutout Switch Fuse (고전압 COS 퓨즈로 부터 방사된 충격성 소음의 저감에 관한 연구)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.70-74
    • /
    • 2008
  • We are using COS to purpose blocking the excess current and to protect the transformer. But the fuse of COS is melt due to the overload if the excess current flows and it destroy an air severing relations to clear as strong arc happens. Such phenomenon induces an impact ambient noise and it gives the circumstance area resident or pedestrian the fear. Thus, We are the actual circumstances which an ambient noise countermeasure establishment have desired urgently. In this study, we grasp the characteristic of an impact ambient noise which a COS fuse happens the melting and study the method to reduce an impact ambient noise.

Comparative Performance Evaluation of Lightning Air Terminals by the HV Laboratory Test (고전압 모의시험을 통한 피뢰침의 성능 비교평가)

  • Lee, Jae-Bok;Myeong, Seong-Ho;Jo, Yeon-Gyu;Kim, Jeom-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.12
    • /
    • pp.627-632
    • /
    • 2001
  • There are claims that ESE(Early streamer emission) Air terminals offer a vastly increased zone of protection over that of traditional lightning rods by causing the emission of an upward streamer/leader that will propagate towards the tip of downward leader at an early stage in the attachment process than would occur for a simple rod in the same geometrical configurations. This paper shows the results of comparing test a particular type of ESE air terminals with a simple rod conducted in the KEH HV laboratory, which are lightning impulse voltage test, flashover direction test and corona emission current measurement. The results from this test show a completely random scattering of flashovers to the conventional and ESE air terminals under identical electrics] and geometrical conditions, and thus shows no advantage of one terminal over the other.

  • PDF

An Analysis of Potential Interference in the Vicinity of the Vertical Ground Rod (수직 접지전극 주변에서 전위간섭의 분석)

  • Lee, Bok-Hee;Lee, Kang-Soo;Seong, Chang-Hoon;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.85-91
    • /
    • 2011
  • A grounding system is generally composed of several vertical, horizontal electrodes or grids. Excessive ground potential rises due to adjacent grounding electrodes can cause failures or misoperation of electronic devices and control systems. It is therefore necessary for computer-related and information-oriented equipment to be placed at a sufficient distance from the areas influenced by grounding electrodes. In this paper, in order to propose a method for evaluating the ground potential rise and interference in the vicinity of vertical grounding electrodes, the experimental and theoretical results on the potential interference between vertical grounding electrodes and its frequency dependence were described. The ground potential rise is sharply decreased with increasing the distance between grounding electrodes. In case that the separation of vertical grounding electrodes is less than 1.5[m], the potential interference coefficient was greater than 0.1 and linearly increased with the frequency of the test current within the frequency of 1[MHz].

The Protective Countermeasure of Water Purifier PCB according to Abnormal Voltage (이상전압에 따른 정수기 PCB의 보호대책)

  • Kim, Dong-Ook;Moon, Hyun-Wook;Lee, Ki-Yeon;Kim, Hyang-Kon;Choi, Chung-Seog
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.64-70
    • /
    • 2007
  • The electrical accident results from an insulation blackdown by over-voltage, an overheating by the excess of allowable current, a deterioration performance by the passage of time, and so on. This paper discusses how to improve the power control system of PCB in water purifier. The protecting device of present power supply control system in water purifier is composed of the varistor device which acts only for impulse-type surges. So the present system can not be protected others except the surge of impulse-type. The newly-suggested power control system in this paper is designed to protect the system by disconnecting power supply through SSR(Solid State Relay) if the value of input voltage is exceeded the setting value.