• Title/Summary/Keyword: Improving Detection Accuracy

Search Result 193, Processing Time 0.023 seconds

Oil Spill Detection from RADARSAT-2 SAR Image Using Non-Local Means Filter

  • Kim, Daeseong;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.61-67
    • /
    • 2017
  • The detection of oil spills using radar image has been studied extensively. However, most of the proposed techniques have been focused on improving detection accuracy through the advancement of algorithms. In this study, research has been conducted to improve the accuracy of oil spill detection by improving the quality of radar images, which are used as input data to detect oil spills. Thresholding algorithms were used to measure the image improvement both before and after processing. The overall accuracy increased by approximately 16%, the producer accuracy increased by 40%, and the user accuracy increased by 1.5%. The kappa coefficient also increased significantly, from 0.48 to 0.92.

Using weighted Support Vector Machine to address the imbalanced classes problem of Intrusion Detection System

  • Alabdallah, Alaeddin;Awad, Mohammed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5143-5158
    • /
    • 2018
  • Improving the intrusion detection system (IDS) is a pressing need for cyber security world. With the growth of computer networks, there are constantly daily new attacks. Machine Learning (ML) is one of the most important fields which have great contribution to address the intrusion detection issues. One of these issues relates to the imbalance of the diverse classes of network traffic. Accuracy paradox is a result of training ML algorithm with imbalanced classes. Most of the previous efforts concern improving the overall accuracy of these models which is truly important. However, even they improved the total accuracy of the system; it fell in the accuracy paradox. The seriousness of the threat caused by the minor classes and the pitfalls of the previous efforts to address this issue is the motive for this work. In this paper, we consolidated stratified sampling, cost function and weighted Support Vector Machine (WSVM) method to address the accuracy paradox of ID problem. This model achieved good results of total accuracy and superior results in the small classes like the User-To-Remote and Remote-To-Local attacks using the improved version of the benchmark dataset KDDCup99 which is called NSL-KDD.

A Vehicle License Plate Detection Scheme Using Spatial Attentions for Improving Detection Accuracy in Real-Road Situations

  • Lee, Sang-Won;Choi, Bumsuk;Kim, Yoo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.93-101
    • /
    • 2021
  • In this paper, a vehicle license plate detection scheme is proposed that uses the spatial attention areas to detect accurately the license plates in various real-road situations. First, the previous WPOD-NET was analyzed, and its detection accuracy is evaluated as lower due to the unnecessary noises in the wide detection candidate areas. To resolve this problem, a vehicle license plate detection model is proposed that uses the candidate area of the license plate as a spatial attention areas. And we compared its performance to that of the WPOD-NET, together with the case of using the optimal spatial attention areas using the ground truth data. The experimental results show that the proposed model has about 20% higher detection accuracy than the original WPOD-NET since the proposed scheme uses tight detection candidate areas.

An image enhancement-based License plate detection method for Naturally Degraded Images

  • Khan, Khurram;Choi, Myung Ryul
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1188-1194
    • /
    • 2018
  • This paper proposes an image enhancement-based license plate detection algorithm to improve the overall performance of system. Non-uniform illumination conditions have huge impact on overall plate detection system accuracy. In this paper, we propose an algorithm for color image enhancement-based license plate detection for improving accuracy of images degraded by excessively strong and low sunlight. Firstly, the image is enhanced by Multi-Scale Retinex algorithm. Secondly, a plate detection method is employed to take advantage of geometric properties of connected components, which can significantly reduce the undesired plate regions. Finally, intersection over union method is applied for detecting the accurate location of number plate. Experimental results show that the proposed method significantly improves the accuracy of plate detection system.

Accuracy Improvement of Pig Detection using Image Processing and Deep Learning Techniques on an Embedded Board (임베디드 보드에서 영상 처리 및 딥러닝 기법을 혼용한 돼지 탐지 정확도 개선)

  • Yu, Seunghyun;Son, Seungwook;Ahn, Hanse;Lee, Sejun;Baek, Hwapyeong;Chung, Yongwha;Park, Daihee
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.4
    • /
    • pp.583-599
    • /
    • 2022
  • Although the object detection accuracy with a single image has been significantly improved with the advance of deep learning techniques, the detection accuracy for pig monitoring is challenged by occlusion problems due to a complex structure of a pig room such as food facility. These detection difficulties with a single image can be mitigated by using a video data. In this research, we propose a method in pig detection for video monitoring environment with a static camera. That is, by using both image processing and deep learning techniques, we can recognize a complex structure of a pig room and this information of the pig room can be utilized for improving the detection accuracy of pigs in the monitored pig room. Furthermore, we reduce the execution time overhead by applying a pruning technique for real-time video monitoring on an embedded board. Based on the experiment results with a video data set obtained from a commercial pig farm, we confirmed that the pigs could be detected more accurately in real-time, even on an embedded board.

Restoring CCTV Data and Improving Object Detection Performance in Construction Sites by Super Resolution Based on Deep Learning (Super Resolution을 통한 건설현장 CCTV 고해상도 복원 및 Object Detection 성능 향상)

  • Kim, Kug-Bin;Suh, Hyo-Jeong;Kim, Ha-Rim;Yoo, Wi-Sung;Cho, Hun-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.251-252
    • /
    • 2023
  • As technology improves with the 4th industrial revolution, smart construction is becoming a key part of safety management in the architecture and civil engineering. By using object detection technology with CCTV data, construction sites can be managed efficiently. In this study, super resolution technology based on deep learning is proposed to improve the accuracy of object detection in construction sites. As the resolution of a train set data and test set data get higher, the accuracy of object detection model gets better. Therefore, according to the scale of construction sites, different object detection models can be considered.

  • PDF

A Chi-Square-Based Decision for Real-Time Malware Detection Using PE-File Features

  • Belaoued, Mohamed;Mazouzi, Smaine
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.644-660
    • /
    • 2016
  • The real-time detection of malware remains an open issue, since most of the existing approaches for malware categorization focus on improving the accuracy rather than the detection time. Therefore, finding a proper balance between these two characteristics is very important, especially for such sensitive systems. In this paper, we present a fast portable executable (PE) malware detection system, which is based on the analysis of the set of Application Programming Interfaces (APIs) called by a program and some technical PE features (TPFs). We used an efficient feature selection method, which first selects the most relevant APIs and TPFs using the chi-square ($KHI^2$) measure, and then the Phi (${\varphi}$) coefficient was used to classify the features in different subsets, based on their relevance. We evaluated our method using different classifiers trained on different combinations of feature subsets. We obtained very satisfying results with more than 98% accuracy. Our system is adequate for real-time detection since it is able to categorize a file (Malware or Benign) in 0.09 seconds.

A Study on Cascaded CNN Accuracy for Face Detection (얼굴 검출을 위한 캐스케이드 CNN 정확도에 관한 연구)

  • Joseline, Uwinema;Lee, Hae-Yeoun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.232-235
    • /
    • 2018
  • Convolutional Neural Network is arguably the most popular deep learning architecture that is one of the most attractive area of research since it has various applications including face detection and recognition. The cascaded CNN operates at multiple resolution and rejects the background regions in the fast low resolution stages. By considering that advantage, we carry out the study on accuracy of cascaded CNN for face detection applications. The key point for our study is to analysing and improving the accuracy of cascaded CNN by applying simulations of algorithm where by we used Google's Tensorflow GPU as deep learning framework.

Real-Time License Plate Detection in High-Resolution Videos Using Fastest Available Cascade Classifier and Core Patterns

  • Han, Byung-Gil;Lee, Jong Taek;Lim, Kil-Taek;Chung, Yunsu
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.251-261
    • /
    • 2015
  • We present a novel method for real-time automatic license plate detection in high-resolution videos. Although there have been extensive studies of license plate detection since the 1970s, the suggested approaches resulting from such studies have difficulties in processing high-resolution imagery in real-time. Herein, we propose a novel cascade structure, the fastest classifier available, by rejecting false positives most efficiently. Furthermore, we train the classifier using the core patterns of various types of license plates, improving both the computation load and the accuracy of license plate detection. To show its superiority, our approach is compared with other state-of-the-art approaches. In addition, we collected 20,000 images including license plates from real traffic scenes for comprehensive experiments. The results show that our proposed approach significantly reduces the computational load in comparison to the other state-of-the-art approaches, with comparable performance accuracy.

YOLOv4 Grid Cell Shift Algorithm for Detecting the Vehicle at Parking Lot (노상 주차 차량 탐지를 위한 YOLOv4 그리드 셀 조정 알고리즘)

  • Kim, Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.31-40
    • /
    • 2022
  • YOLOv4 can be used for detecting parking vehicles in order to check a vehicle in out-door parking space. YOLOv4 has 9 anchor boxes in each of 13x13 grid cells for detecting a bounding box of object. Because anchor boxes are allocated based on each cell, there can be existed small observational error for detecting real objects due to the distance between neighboring cells. In this paper, we proposed YOLOv4 grid cell shift algorithm for improving the out-door parking vehicle detection accuracy. In order to get more chance for trying to object detection by reducing the errors between anchor boxes and real objects, grid cells over image can be shifted to vertical, horizontal or diagonal directions after YOLOv4 basic detection process. The experimental results show that a combined algorithm of a custom trained YOLOv4 and a cell shift algorithm has 96.6% detection accuracy compare to 94.6% of a custom trained YOLOv4 only for out door parking vehicle images.