• Title/Summary/Keyword: Improved-Pneumatic-Movable Weir

Search Result 5, Processing Time 0.022 seconds

Analysis of submerged flow characteristics of the improved-pneumatic-movable weir through the laboratory experiments (개량형 공압식 가동보의 잠김흐름 특성 분석을 위한 실험연구)

  • Lee, Kyung Su;Jang, Chang-Lae;Lee, Namjoo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.615-623
    • /
    • 2016
  • This Study calculated the Submerged Flow Characteristics and Discharge coefficient by the rising angular change of the Improved-Pneumatic-Movable. According to the result, the smaller the ratio of weir height and weir length (L/W) or the weir standing angle, the bigger of the downstream head ($H_2$). The change of discharge reduction factor ($Q_s/Q_1$), by the hight from weir crest to downstream surface and the ratio form weir crest to upstream water height ($h_t/H$), was decreased when the $h_t/H$ closed to number 1. Although the weir water depth of the down-stream was shallower level than the up-stream, the velocity was faster then before. And the more the flow, the less the gab between the upper and lower reaches level. And when the same flow condition, the downstream head ($H_2$) was increased when the L/W was bigger. The Submerged Flow Discharge coefficient of Improved-Pneumatic-Movable weir was made by the upstream approach flow head and the upper lower stream flow condition, not by the physical data of Movable weir.

Analysis of Flow Characteristics of the Improved-Pneumatic-Movable Weir through the Laboratory Experiments (실내실험을 통한 개량형 공압식 가동보의 월류흐름 특성 분석)

  • Lee, Kyung Su;Jang, Chang-Lae;Lee, Namjoo;Ahn, Sang Jin
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1007-1015
    • /
    • 2014
  • This study investigates the discharge coefficient of Improved-Pneumatic-Movable (IPM) weir through the weir, a kind of movable weirs, to estimate much more accurate rating curves using laboratory flume experiments. The discharge coefficient ($C_d$) is from 0.613 to 0.634 by the stand-up angle of the weir. The upstream Froude Number ($F_{r1}$), relative crest length(${\xi}$), Headwater Ratio ($H_1/W$), the Overflow depth ratio of weir crest ($y_c/y_1$) was changed by the upstream. And the downstream Froude number ($F_{r2}$), the Overflow depth ratio of weir crest and Downstream Water depth ($y_c/y_2$) was changed by the downstream. The ratio of Downstream and Up and Downstream water Depth (${\Delta}y/y_2$) was found to be changed by both of the up and downstream flow. They considered the major influence variables and derived the Discharge coefficient Formula at this study. The Discharge coefficient of the Improved-Pneumatic-Movable (IPM) weir was settled by the height of the Movable weir, that is to say, it was settled by the flow conditions of upstream approach flow head and physical data according to the standing angle.

Experimental analysis of the sedimentation processes in the movable weir by changing the channel slope considering weir operation (가동보 운영 및 하상경사 변화에 의한 보 상류 퇴사과정의 실험적 분석)

  • Lee, Kyung Su;Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.729-737
    • /
    • 2018
  • This study investigates the sediment processes the Improved-pneumatic-movable weir through laboratory experiments considering changing channel slopes. Experimental results show that the delta migrates towards the weir and the delta height increases as time passes. Moreover, as the delta approaches the weir, the delta migration speed decreases. As the dimensionless delta location increases, the effective height of dimensionless delta and the dimensionless reservoir capacity increases. Therefore, under the same slope conditions, the sediment deposition volume of the delta is small as the channel slope is mild. This means that the channel slope affects the development of the delta in the upstream of the Improved-pneumatic-movable weir. At the beginning of the experiment, the foreset slope is mild. However, the foreset slope of the delta increases with water depth as the delta migrates downstream. Moreover, as the slope is mild, the ratio of delta front length to delta height is close to 1, and the dimensionless delta height and the dimensionless delta migration speed decrease. As the delta height increases, the water depth, the velocity approaching to the weir and the delta migration speed decrease.

Experimental analysis of the sedimentation processes by variation of standing angle in the improved-pneumatic-movable weir (실내실험에 의한 가동보 기립각도 변화에 대한 토사의 퇴적 과정 분석)

  • Lee, Kyung Su;Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.795-802
    • /
    • 2018
  • This study investigates the hydraulic characteristics and the delta development processes in the improved-pneumatic-movable weir by considering the standing angle of the weir through laboratory experiments. The delta migration speed decreases rapidly with time. As the ratio of delta height to water depth increases, the dimensionless delta migration speed decreases at the delta point. Therefore, the water depth decreases as the delta height increases. Although the delta volume is large due to the effective height of the delta, the delta migration speed and sediment deposition decreases because of the backwater effect on the delta. On the same bed slope condition, the larger the weir height, the larger the delta volume and the ratio of delta height to delta front length is close to 1.0. The delta development could be suppressed when the weir is high. Therefore, the condition that the weir is high has the suppressing effect on the delta developments.

Submerged Flow Characteristics of the Improved-Pneumatic-Movable weir through the Laboratory Experiments (실내실험을 통한 개량형 공압식 가동보의 잠김흐름 특성)

  • Lee, Kyung-Su;Jang, Chang-Lae;Lee, Namjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.621-625
    • /
    • 2015
  • 본 연구에서는 개량형 공압식 가동보를 대상으로 가동보의 기립 각도변화에 따른 잠김흐름에 대한 가동보의 유량계수를 산정하고 흐름특성을 분석하였다. 실험결과, 보의 기립각도의 변화에 대한 위어높이와 위어길이의 비(L/W)가 작을수록 하류수두($H_2$)가 큰 것으로 나타났다. 위어마루에서 하류수면까지의 높이와 위어마루에서 상류 수면고 높이의 비($h_t/H$)에 대한 유량비($Q_s/Q_1$) 변화는 $h_t/H$가 1에 가까울수록 감소하였다. 또한 동일한 $h_t/H$에서 Villemonte(1947)와 Tullis(2007)의 결과와 매우 잘 일치하는 경향을 보여주었다. 따라서 보 하류에서의 수심은 상류보다 작지만 보를 통과하는 흐름으로 인해 하류 유속이 빠르게 나타났으며, 유량이 증가할수록 상 하류 수위차는 감소하는 것으로 나타났다. 또한 같은 유량조건인 경우 하류수두는 L/W가 클수록 크게 증가하였다.

  • PDF