• 제목/요약/키워드: Improved median filtering with

검색결과 9건 처리시간 0.024초

Performance evaluation of noise reduction algorithm with median filter using improved thresholding method in pixelated semiconductor gamma camera system: A numerical simulation study

  • Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.439-443
    • /
    • 2019
  • To improve the noise characteristics, software-based noise reduction algorithms are widely used in cadmium zinc telluride (CZT) pixelated semiconductor gamma camera system. The purpose of this study was to develop an improved median filtering algorithm using a thresholding method for noise reduction in a CZT pixelated semiconductor gamma camera system. The gamma camera system simulated is a CZT pixelated semiconductor detector with a pixel-matched parallel-hole collimator and the spatial resolution phatnom was designed with the Geant4 Application for Tomography Emission (GATE). In addition, a noise reduction algorithm with a median filter using an improved thresholding method is developed and we applied our proposed algorithm to an acquired spatial resolution phantom image. According to the results, the proposed median filter improved the noise characteristics compared to a conventional median filter. In particular, the average for normalized noise power spectrum, contrast to noise ratio, and coefficient of variation results using the proposed median filter were 10, 1.11, and 1.19 times better than results using conventional median filter, respectively. In conclusion, our results show that the proposed median filter using improved the thresholding method results in high imaging performance when applied in a CZT semiconductor gamma camera system.

영상에서 Support Vector Machine과 개선된 Adaptive Median 필터를 이용한 임펄스 잡음 제거 (Support Vector Machine and Improved Adaptive Median Filtering for Impulse Noise Removal from Images)

  • 이대근;박민재;김정욱;김도윤;김동욱;임동훈
    • 응용통계연구
    • /
    • 제23권1호
    • /
    • pp.151-165
    • /
    • 2010
  • 영상은 잡음센서이나 채널 전송에러에 의해 생기는 임펄스 잡음에 의해 자주 오염된다. 본 논문은 영상에서 이런 임펄스 잡음을 제거하는 방법에 대해 논의하고자 한다. 제안된 잡음제거는 SVM(Support Vector Machine)과 개선된 Adaptive Median 필터에 의해 이루어진다. SVM에 의해 영상에서 잡음픽셀여부를 검출하고 검출된 잡음픽셀은 개선된 Adaptive Median 필터에 의해 새로운 픽셀값으로 대체한다. 제안된 방법의 성능을 평가하기 위해 영상 실험을 통하여 salt-and-pepper 임펄스 잡음과 random-valued 임펄스 잡음을 고려하여 기존의 잡음제거 방법들과 정성적이고 MAE, PSNR를 통한 정량적인 비교를 하였다. 실험결과 제안된 방법은 잡음 제거와 미세한 부분에 대한 보존력이 뛰어나고 특히, 많이 오염된 영상에 대해서도 상당한 잡음제거 성능을 보였다.

Feasibility study of improved median filtering in PET/MR fusion images with parallel imaging using generalized autocalibrating partially parallel acquisition

  • Chanrok Park;Jae-Young Kim;Chang-Hyeon An;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.222-228
    • /
    • 2023
  • This study aimed to analyze the applicability of the improved median filter in positron emission tomography (PET)/magnetic resonance (MR) fusion images based on parallel imaging using generalized autocalibrating partially parallel acquisition (GRAPPA). In this study, a PET/MR fusion imaging system based on a 3.0T magnetic field and 18F radioisotope were used. An improved median filter that can set a mask of the median value more efficiently than before was modeled and applied to the acquired image. As quantitative evaluation parameters of the noise level, the contrast to noise ratio (CNR) and coefficient of variation (COV) were calculated. Additionally, no-reference-based evaluation parameters were used to analyze the overall image quality. We confirmed that the CNR and COV values of the PET/MR fusion images to which the improved median filter was applied improved by approximately 3.32 and 2.19 times on average, respectively, compared to the noisy image. In addition, the no-reference-based evaluation results showed a similar trend for the noise-level results. In conclusion, we demonstrated that it can be supplemented by using an improved median filter, which suggests the problem of image quality degradation of PET/MR fusion images that shortens scan time using GRAPPA.

Performance analysis of improved hybrid median filter applied to X-ray computed tomography images obtained with high-resolution photon-counting CZT detector: A pilot study

  • Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3380-3389
    • /
    • 2022
  • We evaluated the performance of an improved hybrid median filter (IHMF) applied to X-ray computed tomography (CT) images obtained using a high-resolution photon-counting cadmium zinc telluride (CZT) detector. To study how the proposed approach improves the image quality, we measured the noise levels and the overall CT-image quality. We established a CZT imaging system with a detector length of 5.12 cm and thickness of 0.3 cm and acquired phantom images. To evaluate the efficacy of the proposed filter, we first modeled two conventional median filters. Subsequently, we were able to achieve a normalized noise power spectrum result of ~10-8 mm2, and furthermore, the proposed method improved the contrast-to-noise ratio by a factor of ~1.51 and the coefficient of variation by 1.55 relative to the counterpart values of the no-filter image. In addition, the IHMF exhibited the best performance among the three filters considered as regards the peak signal-to-noise ratio and no-reference-based image-quality evaluation parameters. Thus, our results demonstrate that the IHMF approach provides a superior image performance over conventional median filtering methods when applied to actual CZT X-ray CT images.

영상 디블러링에서의 임의 잡음 제거를 위한 로지스틱 회귀 (A Logistic Regression for Random Noise Removal in Image Deblurring)

  • 이남용
    • 한국멀티미디어학회논문지
    • /
    • 제20권10호
    • /
    • pp.1671-1677
    • /
    • 2017
  • In this paper, we propose a machine learning method for random noise removal in image deblurring. The proposed method uses a logistic regression to select reliable data to use them, and, at the same time, to exclude data, which seem to be corrupted by random noise, in the deblurring process. The proposed method uses commonly available images as training data. Simulation results show an improved performance of the proposed method, as compared with the median filtering based reliable data selection method.

An Improved Spin Echo Train De-noising Algorithm in NMRL

  • Liu, Feng;Ma, Shuangbao
    • Journal of Information Processing Systems
    • /
    • 제14권4호
    • /
    • pp.941-947
    • /
    • 2018
  • Since the amplitudes of spin echo train in nuclear magnetic resonance logging (NMRL) are small and the signal to noise ratio (SNR) is also very low, this paper puts forward an improved de-noising algorithm based on wavelet transformation. The steps of this improved algorithm are designed and realized based on the characteristics of spin echo train in NMRL. To test this improved de-noising algorithm, a 32 points forward model of big porosity is build, the signal of spin echo sequence with adjustable SNR are generated by this forward model in an experiment, then the median filtering, wavelet hard threshold de-noising, wavelet soft threshold de-noising and the improved de-noising algorithm are compared to de-noising these signals, the filtering effects of these four algorithms are analyzed while the SNR and the root mean square error (RMSE) are also calculated out. The results of this experiment show that the improved de-noising algorithm can improve SNR from 10 to 27.57, which is very useful to enhance signal and de-nosing noise for spin echo train in NMRL.

Image Dehazing Enhancement Algorithm Based on Mean Guided Filtering

  • Weimin Zhou
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.417-426
    • /
    • 2023
  • To improve the effect of image restoration and solve the image detail loss, an image dehazing enhancement algorithm based on mean guided filtering is proposed. The superpixel calculation method is used to pre-segment the original foggy image to obtain different sub-regions. The Ncut algorithm is used to segment the original image, and it outputs the segmented image until there is no more region merging in the image. By means of the mean-guided filtering method, the minimum value is selected as the value of the current pixel point in the local small block of the dark image, and the dark primary color image is obtained, and its transmittance is calculated to obtain the image edge detection result. According to the prior law of dark channel, a classic image dehazing enhancement model is established, and the model is combined with a median filter with low computational complexity to denoise the image in real time and maintain the jump of the mutation area to achieve image dehazing enhancement. The experimental results show that the image dehazing and enhancement effect of the proposed algorithm has obvious advantages, can retain a large amount of image detail information, and the values of information entropy, peak signal-to-noise ratio, and structural similarity are high. The research innovatively combines a variety of methods to achieve image dehazing and improve the quality effect. Through segmentation, filtering, denoising and other operations, the image quality is effectively improved, which provides an important reference for the improvement of image processing technology.

복합 잡음 저감을 위한 반복 가중 평균 필터 (An Iterative Weighted Mean Filter for Mixed Noise Reduction)

  • 이정문
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권1호
    • /
    • pp.175-182
    • /
    • 2017
  • 영상데이터를 획득하거나 저장하는 과정에서는 주변 환경이나 장치의 특성에 따라 잡음이 발생한다. 또한 영상의 전송과정에서도 채널 간섭에 의한 잡음이 발생할 수 있다. 이러한 잡음은 정보의 손실을 가져옴으로써 이어지는 영상처리 단계에서 화질의 저하가 나타나게 된다. 대표적인 잡음으로는 가우시안 잡음과 임펄스 잡음을 들 수 있는데, 영상처리는 일반적으로 이들이 혼재하는 복합 잡음 환경에서 이루어진다. 본 논문에서는 복합 잡음을 저감할 수 있는 반복 가중 평균 필터를 제안한다. 먼저 입력 영상으로부터 임펄스 잡음 화소를 제거한 다음, $3{\times}3$ 슬라이딩 윈도우 영역에 대해 가중 평균 마스크 연산을 수행하여 중앙 화소값을 구하는 간단한 방법이다. 제거된 임펄스 잡음 화소가 가중 평균값으로 모두 채워질 때까지 필터링을 반복한다. 제안한 필터를 ${\sigma}=10$인 가우시안 잡음과 다양한 밀도의 임펖스 잡음이 포함된 영상에 적용하여 처리한 결과, 잡음 밀도 60% 이하에서 기존의 SAWF, AWMF, MMF 등에 비해 PSNR이 각각 최대 12.98 dB, 1.97 dB, 1.97 dB 개선되었다.

정맥 관찰용 소형 근적외선 영상 시스템에서의 비지역적평균 알고리즘 적용 가능성 연구 (Application Feasibility Study of Non-local Means Algorithm in a Miniaturized Vein Near-infrared Imaging System)

  • 정현우;이영진
    • 한국방사선학회논문지
    • /
    • 제17권5호
    • /
    • pp.679-684
    • /
    • 2023
  • 정맥의 천자는 병리학적 검사를 위한 혈액 샘플을 획득하기 위해 널리 사용되고 있다. 바늘을 사용한 침습적인 정맥 천자 방법이 반복되서 시행되면 환자가 받는 고통이 증가되는 문제가 있어 본 연구팀은 사전에 소형 근적외선 (near-infrared, NIR) 영상 시스템을 개발하였다. 획득된 NIR 영상의 화질 개선을 위하여 본 연구에서는 노이즈 제거에 효율적으로 잘 알려진 비지역적 평균 (non-local means, NLM) 알고리즘을 모델링하여 시스템에서의 적용 가능성을 분석하고자 한다. 개발된 NIR 영상 시스템은 dichroic 및 long-pass filter를 적외선 (infrared, IR)이 통과하여 최종적으로 CMOS 센서 모듈로 검출되는 원리를 기반으로 구성하였다. 제안하는 NLM 알고리즘은 노이즈를 제거시키고자 하는 픽셀을 주변 픽셀들간의 거리들을 고려한 값으로 대체하는 원리를 기반으로 모델링하였다. 850 nm의 중심 파장을 가진 NIR 영상을 획득 후 NLM 알고리즘을 적용하여 히스토그램 평활화를 통해 최종 정맥 영역을 분할하였다. 결과적으로 NLM 알고리즘을 적용한 정맥의 NIR 영상의 coefficient of variation은 평균 0.247로 기존의 filtering 방법들과 비교하여 우수한 결과값으로 도출되었다. 또한 NLM 알고리즘의 dice similarity coefficient 값은 기존의 median filter와 total variation 방법에 비하여 각각 62.91 및 9.40% 향상된 값이 획득되었다. 결론적으로 NLM 알고리즘은 NIR 영상 시스템으로 획득한 정맥의 정확한 분할이 가능하게 할 수 있음을 증명하였다.