DOI QR코드

DOI QR Code

An Iterative Weighted Mean Filter for Mixed Noise Reduction

복합 잡음 저감을 위한 반복 가중 평균 필터

  • Lee, Jung-Moon (Division of Electrical and Electronic Engineering, Kangwon National University)
  • 이정문 (강원대학교 전기전자공학부)
  • Received : 2017.01.19
  • Accepted : 2017.02.25
  • Published : 2017.02.28

Abstract

Noises are usually generated by various external causes and low quality devices in image data acquisition and recording as well as by channel interference in image transmission. Since these noise signals result in the loss of information, subsequent image processing is subject to the corruption of the original image. In general, image processing is performed in the mixed noise environment where common types of noise, known to be Gaussian and impulse, are present. This study proposes an iterative weighted mean filter for reducing mixed type of noise. Impulse noise pixels are first turned off in the input image, then $3{\times}3$ sliding window regions are processed by replacing center pixel with the result of weighted mean mask operation. This filtering processes are iterated until all the impulse noise pixels are replaced. Applied to images corrupted by Gaussian noise with ${\sigma}=10$ and different levels of impulse noise, the proposed filtering method improved the PSNR by up to 12.98 dB, 1.97 dB, 1.97 dB respectively, compared to SAWF, AWMF, MMF when impulse noise desities are less than 60%.

영상데이터를 획득하거나 저장하는 과정에서는 주변 환경이나 장치의 특성에 따라 잡음이 발생한다. 또한 영상의 전송과정에서도 채널 간섭에 의한 잡음이 발생할 수 있다. 이러한 잡음은 정보의 손실을 가져옴으로써 이어지는 영상처리 단계에서 화질의 저하가 나타나게 된다. 대표적인 잡음으로는 가우시안 잡음과 임펄스 잡음을 들 수 있는데, 영상처리는 일반적으로 이들이 혼재하는 복합 잡음 환경에서 이루어진다. 본 논문에서는 복합 잡음을 저감할 수 있는 반복 가중 평균 필터를 제안한다. 먼저 입력 영상으로부터 임펄스 잡음 화소를 제거한 다음, $3{\times}3$ 슬라이딩 윈도우 영역에 대해 가중 평균 마스크 연산을 수행하여 중앙 화소값을 구하는 간단한 방법이다. 제거된 임펄스 잡음 화소가 가중 평균값으로 모두 채워질 때까지 필터링을 반복한다. 제안한 필터를 ${\sigma}=10$인 가우시안 잡음과 다양한 밀도의 임펖스 잡음이 포함된 영상에 적용하여 처리한 결과, 잡음 밀도 60% 이하에서 기존의 SAWF, AWMF, MMF 등에 비해 PSNR이 각각 최대 12.98 dB, 1.97 dB, 1.97 dB 개선되었다.

Keywords

References

  1. H. Hwang and R. A. Hadded, "Adaptive median filter : New algorithms and results," IEEE Trans. Image Process., Vol. 4, No. 4, pp. 499-502, Apr. 1995. https://doi.org/10.1109/83.370679
  2. P. E. Ng and K. K. Ma, "A switching median filter with boundary discriminative noise detection for extremely corrupted images," IEEE Trans. Image Process., Vol. 15, No. 6, pp. 1506-1516, June 2006. https://doi.org/10.1109/TIP.2005.871129
  3. S. Esakkirajan, T. Veerakumar, A. N. Subramanyam, and C. H. PremChand, "Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter," IEEE Trans. Signal Process. Lett., Vol. 18, No. 5, May 2011.
  4. C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," Proc. Int. Conf. Computer Vision, pp. 839-846, 1998.
  5. M. Zhang and B. K. Gunturk, "Multiresolution bilateral filtering for image denoising," IEEE Trans. Image Process., Vol. 17, No. 12, pp. 2324-2333, Dec. 2008. https://doi.org/10.1109/TIP.2008.2006658
  6. A. Buades, B. Coll, and J. M. Morel, "A non-local algorithm for image denoising," Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, Vol. 2, pp. 60-65, 2005.
  7. G. Treece, "The bitonic filter : Linear filtering in an edge-preserving morphological framework," IEEE Trans. Image Processing, Vol. 25, No. 11, Nov. 2016.
  8. Jiahui Wang and Jingxin Hong, "A new self-adaptive weighted filter for removing noise in infrared images," 2009 International Conference on Information Engineering and Computer Science, 2009.
  9. P. Zhang and F. Li, "A new adaptive weighted mean filter for removing salt-and-pepper noise," IEEE Signal Process. Lett., Vol. 21, No. 10, pp. 1280-1283, Oct. 2014. https://doi.org/10.1109/LSP.2014.2333012
  10. P. Lin, B. Chen, F. Cheng, S. Huang, "A morphological mean filter for impulse noise removal," J. Diaplay Technology, Vol. 12, No. 4, April 2016.