• 제목/요약/키워드: Improved genetic algorithm

검색결과 341건 처리시간 0.027초

Genetic algorithm-based content distribution strategy for F-RAN architectures

  • Li, Xujie;Wang, Ziya;Sun, Ying;Zhou, Siyuan;Xu, Yanli;Tan, Guoping
    • ETRI Journal
    • /
    • 제41권3호
    • /
    • pp.348-357
    • /
    • 2019
  • Fog radio access network (F-RAN) architectures provide markedly improved performance compared to conventional approaches. In this paper, an efficient genetic algorithm-based content distribution scheme is proposed that improves the throughput and reduces the transmission delay of a F-RAN. First, an F-RAN system model is presented that includes a certain number of randomly distributed fog access points (F-APs) that cache popular content from cloud and other sources. Second, the problem of efficient content distribution in F-RANs is described. Third, the details of the proposed optimal genetic algorithm-based content distribution scheme are presented. Finally, simulation results are presented that show the performance of the proposed algorithm rapidly approaches the optimal throughput. When compared with the performance of existing random and exhaustive algorithms, that of the proposed method is demonstrably superior.

An Improved Harmony Search Algorithm and Its Application in Function Optimization

  • Tian, Zhongda;Zhang, Chao
    • Journal of Information Processing Systems
    • /
    • 제14권5호
    • /
    • pp.1237-1253
    • /
    • 2018
  • Harmony search algorithm is an emerging meta-heuristic optimization algorithm, which is inspired by the music improvisation process and can solve different optimization problems. In order to further improve the performance of the algorithm, this paper proposes an improved harmony search algorithm. Key parameters including harmonic memory consideration (HMCR), pitch adjustment rate (PAR), and bandwidth (BW) are optimized as the number of iterations increases. Meanwhile, referring to the genetic algorithm, an improved method to generate a new crossover solutions rather than the traditional mechanism of improvisation. Four complex function optimization and pressure vessel optimization problems were simulated using the optimization algorithm of standard harmony search algorithm, improved harmony search algorithm and exploratory harmony search algorithm. The simulation results show that the algorithm improves the ability to find global search and evolutionary speed. Optimization effect simulation results are satisfactory.

비 결정론적 최적화 기법을 이용한 선박의 CAE 모델링 자동화를 위한 지능형 에이전트 시스템의 개발 (Development of intelligent agent system for automated ship CAE modelling by non-deterministic optimized methods)

  • 배동명;김학수;신창혁;왕칭
    • 수산해양기술연구
    • /
    • 제44권1호
    • /
    • pp.57-67
    • /
    • 2008
  • Recently, Korean shipbuilding industry is keeping up the position of world wide No. 1 in world shipbuilding market share. It is caused by endless efforts to develope new technologies and methods and fast development of IT technologies in Korea, to raise up its productivities and efficiency in shipbuilding industry with many kinds of optimizing methods including genetic algorithm or artificial life algorithm... etc. In this paper, we have suggested the artificial life algorithm with relay search micro genetic algorithm. and we have improved a defect of simple genetic algorithm for its slow convergence speed and added a variety of solution candidates with applying relay search simple genetic algorithm. Finally, we have developed intelligent agent system for ship CAE modeling. We have tried to offer some conveniences a ship engineer for repeated ship CAE modeling by changing ship design repeatedly and to increase its accuracy of a ship model with it.

한계분석법과 유전알고리즘을 결합한 다단계 다계층 재고모형의 적정재고수준 결정 (Optimal Spare Part Level in Multi Indenture and Multi Echelon Inventory Applying Marginal Analysis and Genetic Algorithm)

  • 정성태;이상진
    • 경영과학
    • /
    • 제31권3호
    • /
    • pp.61-76
    • /
    • 2014
  • There are three methods for calculating the optimal level for spare part inventories in a MIME (Multi Indenture and Multi Echelon) system : marginal analysis, Lagrangian relaxation method, and genetic algorithm. However, their solutions are sub-optimal solutions because the MIME system is neither convex nor separable by items. To be more specific, SRUs (Shop Replaceable Units) are required to fix a defected LRU (Line Replaceable Unit) because one LRU consists of several SRUs. Therefore, the level of both SRU and LRU cannot be calculated independently. Based on the limitations of three existing methods, we proposes a improved algorithm applying marginal analysis on determining LRU stock level and genetic algorithm on determining SRU stock level. It can draw optimal combinations on LRUs through separating SRUs. More, genetic algorithm enables to extend the solution search space of a SRU which is restricted in marginal analysis applying greedy algorithm. In the numerical analysis, we compare the performance of three existing methods and the proposed algorithm. The research model guarantees better results than the existing analytical methods. More, the performance variation of the proposed method is relatively low, which means one execution is enough to get the better result.

A GENETIC ALGORITHM BY USE OF VIRUS EVOLUTIONARY THEORY FOR SCHEDULING PROBLEM

  • Saito, Susumu
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.365-370
    • /
    • 2001
  • The genetic algorithm that simulates the virus evolutionary theory has been developed applying to combinatorial optimization problems. The algorithm in this study uses only one individual and a population of viruses. The individual is attacked, inflected and improved by the viruses. The viruses are composed of flour genes (a pair of top gene and a pair of tail gene). If the individual is improved by the attacking, the inflection occurs. After the infection, the tail genes are mutated. If the same virus attacks several times and fails to inflect, the top genes of the virus are mutated. By this mutation, the individual can be improved effectively. In addition, the influence of the immunologic mechanism on evolution is simulated.

  • PDF

Evaluation of concrete compressive strength based on an improved PSO-LSSVM model

  • Xue, Xinhua
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.505-511
    • /
    • 2018
  • This paper investigates the potential of a hybrid model which combines the least squares support vector machine (LSSVM) and an improved particle swarm optimization (IMPSO) techniques for prediction of concrete compressive strength. A modified PSO algorithm is employed in determining the optimal values of LSSVM parameters to improve the forecasting accuracy. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed IMPSO-LSSVM model. Further, predictions from five models (the IMPSO-LSSVM, PSO-LSSVM, genetic algorithm (GA) based LSSVM, back propagation (BP) neural network, and a statistical model) were compared with the experimental data. The results show that the proposed IMPSO-LSSVM model is a feasible and efficient tool for predicting the concrete compressive strength with high accuracy.

물류 정보시스템을 위한 IEEE 802.11 무선랜 시스템에서 유전자 알고리듬을 이용한 Dynamic Contention Window 제어 알고리듬 (Dynamic Contention Window Control Algorithm Using Genetic Algorithm for IEEE 802.11 Wireless LAN Systems for Logistics Information Systems)

  • 이상헌;최우용;이상완
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2007년도 추계학술대회 및 정기총회
    • /
    • pp.330-340
    • /
    • 2007
  • IEEE 802.11 wireless LANs employ the backoff algorithm to avoid contentions among STAs when two or more STAs attempt to transmit their data frames simultaneously. The MAC efficiency can be improved if the CW values are adaptively changed according to the channel state of IEEE 802.11 wireless LANs. In this paper, we propose a dynamic contention window control algorithm using the genetic algorithm to improve the MAC throughput of IEEE 802.11 wireless LANs.

  • PDF

APPLYING ELITIST GENETIC ALGORITHM TO RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM

  • Jin-Lee Kim;Ok-Kyue Kim
    • 국제학술발표논문집
    • /
    • The 2th International Conference on Construction Engineering and Project Management
    • /
    • pp.739-748
    • /
    • 2007
  • The objective of this research study is to develop the permutation-based genetic algorithm for solving the resource-constrained project scheduling problem in construction engineering by incorporating elitism into genetic algorithm. A key aspect of the algorithm was the development of the elitist roulette selection operator to preserve the best individual solution for the next generation so the improved solution can be obtained. Another notable characteristic is the application of the parallel schedule generation scheme to generate a feasible solution to the problem. Case studies with a standard test problem were presented to demonstrate the performance and accuracy of the algorithm. The computational results indicate that the proposed algorithm produces reasonably good solutions for the resource-constrained project scheduling problem.

  • PDF

순회판매원문제를 위한 분산유전알고리즘 성능평가 (Performance Analysis of Distributed Genetic Algorithms for Traveling Salesman Problem)

  • 김영남;이민정;하정훈
    • 산업경영시스템학회지
    • /
    • 제39권4호
    • /
    • pp.81-89
    • /
    • 2016
  • Distributed genetic algorithm (DGA), also known as island model or coarse-grained model, is a kind of parallel genetic algorithm, in which a population is partitioned into several sub-populations and each of them evolves with its own genetic operators to maintain diversity of individuals. It is known that DGA is superior to conventional genetic algorithm with a single population in terms of solution quality and computation time. Several researches have been conducted to evaluate effects of parameters on GAs, but there is no research work yet that deals with structure of DGA. In this study, we tried to evaluate performance of various genetic algorithms (GAs) for the famous symmetric traveling salesman problems. The considered GAs include a conventional serial GA (SGA) with IGX (Improved Greedy Crossover) and several DGAs with various combinations of crossover operators such as OX (Order Crossover), DPX (Distance Preserving Crossover), GX (Greedy Crossover), and IGX. Two distinct immigration policies, conventional noncompetitive policy and newly proposed competitive policy are also considered. To compare performance of GAs clearly, a series of analysis of variance (ANOVA) is conducted for several scenarios. The experimental results and ANOVAs show that DGAs outperform SGA in terms of computation time, while the solution quality is statistically the same. The most effective crossover operators are revealed as IGX and DPX, especially IGX is outstanding to improve solution quality regardless of type of GAs. In the perspective of immigration policy, the proposed competitive policy is slightly superior to the conventional policy when the problem size is large.

A GENETIC ALGORITHM BASED FEATURE EXTRACTION TECHNIQUE FOR HYPERSPECTRAL IMAGERY

  • Ryu Byong Tae;Kim Choon-Woo;Kim Hakil;Lee Kyu Sung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.209-212
    • /
    • 2005
  • Hyperspectral data consists of more than 200 spectral bands that are highly correlated. In order to utilize hyperspectral data for classification, dimensional reduction or feature extraction is desired. By applying feature extraction, computational complexity of classification can be reduced and classification accuracy may be improved. In this paper, a genetic algorithm based feature extraction technique is proposed. Measure from discriminant analysis is utilized as optimization criterion. A subset of spectral bands is selected by genetic algorithm. Dimension of feature space is further reduced by linear transformation. Feasibility of the proposed technique is evaluated with AVIRIS data.

  • PDF