

APPLYING ELITIST GENETIC ALGORITHM TO
RESOURCE-CONSTRAINED PROJECT SCHEDULING

PROBLEM

Jin-Lee Kim, Ph.D.1 and Ok-Kyue Kim, Ph.D.2
1 Assistant professor, Department of Engineering Technology, Missouri Western State
University, 4525 Downs Drive, St. Joseph, MO 64507, U.S.A.
2 Professor, Department of Architectural Engineering, Chungbuk National University, 12
Gaeshin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, Korea

Abstract

The objective of this research study is to develop the permutation-based genetic algorithm
for solving the resource-constrained project scheduling problem in construction
engineering by incorporating elitism into genetic algorithm. A key aspect of the algorithm
was the development of the elitist roulette selection operator to preserve the best individual
solution for the next generation so the improved solution can be obtained. Another notable
characteristic is the application of the parallel schedule generation scheme to generate a
feasible solution to the problem. Case studies with a standard test problem were presented
to demonstrate the performance and accuracy of the algorithm. The computational results
indicate that the proposed algorithm produces reasonably good solutions for the resource-
constrained project scheduling problem.

Keywords: Algorithm, Heuristics, Optimization, Project management, Resource-
constrained project scheduling

1. Introduction

The demand of project scheduling software has continued to grow at an annual rate of
almost 20% [1]. Project scheduling software packages often consider constrained
resources. However, their capability to solve resource-constrained problems is either fragile
or nonexistent [2]. Thus, there is a remarkable need for efficient solution approaches that
allow for the complexities of real-world problems, which is an intended contribution of this
research.

The resource-constrained project scheduling problem (hereinafter RCPSP) have been
solved with the various exact methods, priority-rule based heuristics, and various meta-
heuristic methods. First, the various exact methods employ some form of mathematical
programming such as dynamic programming and zero-one programming or other analytical
procedure such as implicit enumeration with branch and bound to search for the best
possible solutions. Relative to the vast amount of research that has been conducted on
heuristic procedures, optimal procedures have rarely been the focus of such extensive
research. Considerable progress has been made to produce optimal results by depending on

739

strong assumptions for small-sized project networks. However, no optimal procedures have
proven to be computationally feasible for large, complex projects that can occur in practice
[3]. Therefore, heuristic and meta-heuristic approaches are needed for large-sized project
networks.

Second, priority-rule based heuristics employ some rule of thumb or experience to
determine priorities among activities competing for available resources. They combine one
or more priority rules and schedule generation scheme to generate one or more schedule.
These heuristic procedures generally produce solutions for the RCPSP in a reasonable
amount of time, even though the size of the project network is large. However, they have
proven to be inconsistent with regard to the quality of results produced on project networks
[3]. Finally, various meta-heuristic methods, such as genetic algorithm (GA), simulated
annealing (SA), tabu search (TS), and ant colonies (AC), have been also applied to the
RCPSP to overcome the drawbacks of the exact optimal methods and priority-rule based
heuristics and to improve the performance of the existing meta-heuristic methods.

The genetic algorithm (GA), a meta-heuristic and optimization technique, has emerged as a
tool that is beneficial for a variety of study fields including construction applications since
the introduction in the 1960’s by Holland [4]. GA has also attracted considerable attention
in a number of fields not only as a methodology for optimization, adaptation, and learning,
but also as optimization techniques for solving discrete optimization problems or other
hard optimization problems [5]. GA has been used successfully to solve construction
management problems, including resources scheduling with a small number of activities [6,
7, 8, 9].

A permutation-based genetic algorithm proposed by Hartmann makes use of activity list
representation [10]. The study also proposed additional two encodings, which include
priority value based genetic algorithm similar to the work of Lee and Kim [11] and
priority-rule based genetic algorithm similar to the work of [12]. From their computational
results, the permutation-based encoding genetic algorithm outperformed two other
encoding algorithms.

This paper presents a new permutation-based elitist genetic algorithm (hereinafter PEGA)
for solving the RCPSP in construction engineering. The proposed algorithm aims to
allocate multiple available construction resources to activities of a single project to achieve
the objective of minimizing the project duration. A key aspect of the algorithm was the
development of the elitist roulette selection operator to preserve the best individual solution
for the next generation so the improved solution can be obtained. Parallel schedule
generation scheme was applied to generate a feasible solution to the problem. Case studies
with a standard test problem were presented to demonstrate the performance and accuracy
of the algorithm over other GA method under single and multiple resources.

2. Objective function of RCPSP

The RCPSP aimed to allocate the available resources to activities so as to find the shortest
duration of a project within the constraints of precedence relationships. The assumptions
underlying this problem were that the availability of resources is constrained to some
maximum value, and that the project has to be completed using the given resources. As a

740

result of the RCPSP, a schedule that shows the shortest duration with resource limits was
created for a project network. The objective function was formulated for a permutation-
based elitist genetic algorithm for the RCPSP. As a constrained optimization problem, the
RCPSP belongs to one type of sequencing problem. Therefore, the objective function for
the algorithm is to minimize the project duration when constrained by precedence
relationships among project activities and the availability of resources.

3. Applying elitist into permutation-based genetic algorithm

The main procedure of the PEGA was developed and implemented in this paper, as shown
in Figure 1. Several operators were used in the development of the algorithm. They include
(1) the random number generator for producing an initial population, (2) the parallel
schedule generation scheme for calculating a fitness value of each individual, (3) the elitist
roulette wheel selection operator for selecting a parent individual for the next generation,
(4) the one-point crossover operator for exchanging parent string segments and
recombining them to produce two resulting offspring individuals, and finally (5) the
uniform mutation operator for playing a role of random local search which searches
regardless of the direction of learning to obtain the better solution. PEGA algorithm is
terminated if it meets either the number of generation or time to stop specified in the start
phase.

Start
(Input data and PEGA parameters)

End

Step 3: Selection/Reproduction
(Elitist roulette wheel selection operator)

Step 4: Crossover/Reproduction
(One-point crossover operator)

Step 6: Termination
conditions

(No. of Generation, Time to stop)

Yes

No

Step 2: Evaluation of the fitness value
(Parallel schedule generation scheme)

Step 1: Generation of initial population
(Random number generator)

Step 5: Uniform mutation

Figure 1: Main procedure of PEGA

PEGA was developed by employing four basic operators: elite selection [13], roulette
wheel selection [4], one-point crossover [10], and uniform mutation [5]. The initial
population of possible solutions to the RCPSP was created to apply the algorithm in the
very first step of global search. A fitness value of an individual in the initial population was
calculated, using the parallel schedule generation scheme proposed by Kelley [14] and the
one of Brooks [15]. The selection of the parent individuals was made through the elitist

741

roulette wheel selection operator for the next generation. The elitist roulette wheel selection
operator is the combined operator using the elite selection and the roulette wheel selection.
Using the parent individuals obtained from the selection operator, one-point crossover
operator was performed by exchanging parent individual segments and then recombining
them to produce two resulting offspring individuals. The uniform mutation operator was
performed to play the role of random local search.

3.1 Permutation-based encoding

A schedule has to be represented to encode the RCPSP. In addition to the schedule
representation, a schedule generation scheme needs to decode the schedule representation
into a schedule. A schedule representation is a representation of a priority-structure among
the activities. A solution for the RCPSP was represented in a chromosome that represented
an activity sequence for the problem. A chromosome is also called an individual that was
given by an activity sequence. Each gene in a chromosome stands for an activity number.
An activity has a lower priority than all preceding activities in the sequence and a higher
priority than all succeeding activities. Thus, an individual becomes precedence feasible
permutation of the set of activities because an activity cannot comes after the position of
one of its successors (predecessors) in the list used for the generation of an individual. A
precedence feasible permutation was generated using random number generator developed
in this research.

This research adopted a permutation-based encoding that was appropriate for solving the
RCPSP [10, 16]. An initial population composed of precedence feasible individuals was
produced by the random number generator. It is notable that the random number generator
simply provides precedence feasible solutions, but does not give the fitness value (the
project duration), a possible starting and finishing time of an activity, and the feasibility of
resource constraints. Random number generator, for example, generates an individual {2,
7, 1, 6, 4, 3, 8, 9, 5, 11, 10} for 11 non-dummy activities.

Worth noting is that the fitness function is different from the objective function for the
clarification of a computation process of the fitness value. As mentioned previously, the
objective function is to minimize the fitness function, which generates the fitness value of a
project throughout the scheme process. The fitness function is to find the maximum value
out of all fitness values of every activity to be scheduled in a project. The maximum value
is obtained by comparing the finish time of the last activity and the fitness value of the
activity just before the last activity. The parallel schedule generation scheme proposed by
Kelley [14] and the one of Brooks [15] was utilized to calculate the fitness value of an
individual. When all activities in an individual are scheduled, the fitness value is obtained
from the maximum value between the finish time of the last activity and the fitness value
of the activity just before the last activity.

The purpose of applying the parallel schedule generation scheme to the individuals in a
population was to obtain schedules that showed the resource profile and the project
duration. It is important to note that a uniquely determined schedule (phenotype) computed
using the parallel scheme can be related more than one individual (genotype). A uniquely
determined schedule means that it is possible for several individuals to have the same
fitness value, but their starting time should be totally different. The unique schedules in the

742

search space as genotypes may be related to the same schedule, which is the project
duration for the RCPSP.

The objective function for the RCPSP is to minimize the fitness function. Therefore, a
transformation from the minimization function to a maximization function was needed to
ensure that the individual selection process performs correctly. This research modified the
transformation method proposed by Lee and Kim [11] by adding a new parameter named
transformation power (TP) to their transformed objective function in order to emphasize
low fitness values [17]. The addition of the transformation power showed how much the
transformed fitness values can be emphasized by making the original fitness values low.

3.2 Combining Elitist with Roulette Wheel Selection

The elitist preserving selection called elitism proposed by De Jong [13] was adopted to
combine with the roulette wheel selection operator in this research. The elitist roulette
selection is operated using the procedure shown in Figure 2. Elitism first preserves the best
individual generated up to generation t into the current generation t+1, if the fitness value
of an individual in the current population is larger than that of every individual in the
current population. The roulette wheel selection operator developed by Holland [4] has
been employed, as used in many studies [7, 10]. The concept of the selection was to
determine selection probability for each individual proportional to the fitness value.

Figure 2: Procedure of elitist roulette selection operator

3.3 One-Point Crossover Operator

The goal of a crossover operator is to combine pieces of information coming from different
individuals in the population. It is important to preserve good building blocks and maintain
randomness and population diversity for searching non-redundant solutions [16]. The order
of the first several activities is the key to preserve the whole individual, providing the basis
for the remaining activities and deciding how good the order of the remaining activities
will be to a certain degree.

The one-point crossover operator is capable of preserving schemata in a more effective
manner because it keeps the first half of both parents intact and is less random than UX3.
The probability of disrupting short defining length is rather low, even though crossover

743

operation in the beginning of an individual is likely to disrupt schema [18]. The rationale
for using the one-point crossover operator is that a precedence feasible offspring is
generated if it is applied to precedence feasible parents [10, 16]. The theorem was proven
by Hartmann [10].

3.4 Uniform Mutation Operator

The goal of the uniform mutation is to exchange two neighboring genes without violating
precedence relationship in order to create an individual that could not have been produced
by the crossover operator. The uniform mutation operator was operated as follows: for each
individual from a generation, the operator generates a real random number and then swaps
an activity after pivot point with activity at pivot point if a random number is equal to or
less than mutation probability. The operator can be ineffective because the genes in
neighboring individual positions could be switched while still representing the same
schedule. Therefore, it is important to note that a mutation on an individual does not
necessarily change the related schedule because interchanging two activities that have the
same start time in the activity sequence is likely to change the individual, but not the
related schedule.

4. Results and analysis

PEGA was programmed using the JAVA programming language on the Windows XP
operation system, and Microsoft® Office Excel 2003 was selected as the representation and
analysis tool for the data. The parameters of the algorithm include population size,
transformation power, crossover probability, and mutation probability for global search.
Two different types of termination conditions can be determined to stop the run of the
algorithm. They include the number of generations and timeout. Two output options were
available for the analysis of data. They include full output and summary output.

In order to test and verify the overall procedure of the PEGA, a case example of a small
construction project schedule was extracted from the work of Shanmuganayagam [19].
Figure 3 shows the example of schedule network, which includes activity name, duration,
and resource requirements.

Figure 3: Example of schedule network

744

After preliminary studies, the parameter configurations were determined to obtain the best
performance from the algorithm because the population size and various parameters were
the critical elements for optimal performance. This research tested the algorithm on the
example using both single and multiple resources in order to demonstrate the robustness of
the current approach.

4.1 Effect of Elitist on the Performance

This section describes the effect of elitist on the performance of the algorithm by running
PEGA on the case example of 11 non-dummy activities with single resource. The default
set of the parameters as follows: the population size, transformation power, crossover and
mutation probability were set to 30, 1.6, 0.5, and 0.03, respectively. The algorithm was
terminated with the number of generation of 100 using the parallel scheme. Figure 4 shows
the profile of the schedule obtained from the elitist individual, which was produced from
the last generation of 100. The project duration was found at 38 days, which can be
considered near-optimal solution to the example problem.

Figure 4: Profile of the schedule produced by the elitist

4.2 Comparison with other GA

The case example was used to verify the mechanism of the PEGA. All activities of the
project network were scheduled using just one resource with a fixed resource profile to
make an impartial comparison with the results obtained from the work of Chan et al. [6].
The population size is set to 50 and the total number of generation was set to 40
experimental runs so the total trial size of 2,000 was performed. After many trials,
crossover rate and mutation rate were set to 0.5 and 0.03, respectively.

Table 1 shows the various schedules in comparison to three schedules produced by GA-
scheduler [6]. The algorithm produced the project duration of 38 days, which is same as
those obtained by the GA-scheduler. It also generated 1,426 unique schedules, which
amounts to 71.30% of the total schedules of 2000. It took the total CPU time of 610
milliseconds for the algorithm to solve the RCPSP with single resource. Worth noting is
that the algorithm is able to provide several equally good and feasible scheduling
alternatives, which indicate the similar result to GA-scheduler [6]. The remarkable thing
about the algorithm is that it does not require applying any type of penalty factor since the
schedules were uniquely determined by the algorithm. The algorithm does not also depend
on any set of heuristic rules.

745

Table 1: Comparison of Various Schedules by Method

Activity Starting times of activities obtained by
GA-scheduler

[6]
PEGA

(This research) No. Resource
requirement

S1 S2 S3 Elitist S1 S2 S3
1 3 6 7 8 6 6 6 6
2 6 0 0 0 0 0 0 0
3 4 10 11 14 6 10 20 6
4 2 15 15 19 14 12 10 10
5 4 28 28 28 26 28 28 26
6 2 6 7 8 14 12 10 8
7 4 6 6 6 10 6 6 10
8 2 17 18 18 24 22 22 24
9 4 32 32 32 8 22 22 18
10 5 22 22 22 32 32 32 32
11 2 28 28 28 26 28 28 26

4.3 Scheduling Project with Multiple Resources

PEGA was run to take into account of the multiple resources to the same case example.
Three different types of resources were considered. It is obvious that when multiple
resources are required, project duration will make changes, depending on the resource
availability and requirements. As the case of single resource, the resource availabilities are
constant over the project duration and the resource availabilities of three resources are
assumed to be 8, 1, and 1, respectively.

Resource 1 usages

8

7

6 4 5

5 1 6 8

4

3 2

2 3 9 10

1 7 11

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Time (Days)

Resource 2 usages

1

0
2 6 4 5 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Time (Days)
Resource 3 usages

1

0
1 8 3 11 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Time (Days)

Resource 1 Limit = 8

Resource 2 Limit = 1

Resource 3 Limit = 1

Delayed due to conflict with R3Delayed due to conflict with R2

Fitness value (Project duration)

t = 6 t = 10t = 0 t = 22t = 20 t = 28
t = 30

t = 38t = 32 t = 48 t = 54

Figure 5: Scheduling with multiple resources

After many trials, the population size, crossover rate, and mutation rate were set to 50, 0.5,
and 0.03, respectively. The overall fitness value, which is the project duration of the

746

individual considered, was obtained for multiple resources using the parallel schedule
generation scheme. Figure 5 shows the result of scheduling the case example with multiple
resources. The project duration was 54 days that was obtained by the partial schedule. As a
result of scheduling with multiple resources, it was found that activity 9 was delayed for
two days due to conflict with R2. It was also found that activities 3 and 10 were postponed
for 6 and 10 days due to resource conflicts with R3, respectively.

5. Conclusion

This paper addressed the permutation-based elitist genetic algorithm for solving multiple
resource-constrained project scheduling problem. Compared with other genetic algorithm
method, the algorithm showed that the elitist preserves the best individual solution for the
next generation so the improved solution can be obtained. It was also found that the
algorithm is able to explore and exploit several near-optimal solutions, which may include
the optimal solution, because heuristic methods do not generally provide the optimal
solution. The algorithm is useful to solve the multiple resource-constrained project
scheduling problem. Several equally good scheduling alternatives generated by the
algorithm provide more information for decision making than the only one schedule
produced by the heuristic method.

References

[1] Wallace, R., and Halverson, W. (1992). “Project management: A critical success

factor or a management fad.” Industrial Engineering, 24(4), 48-50.

[2] De Wit, J., and Herroelen, W. (1990). “An evaluation of microcomputer-based

software packages for project management.” European Journal of Operations
Research, 49, 102-139.

[3] Kim, J.-L., and Ellis, R. D. (2005). “A Framework for Integration Model of

Resource-Constrained Scheduling using Genetic Algorithms,” Proceedings of the
2005 Winter Simulation Conference, M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and
J. A. Joines, eds., December 4-7, Orlando, FL, 2119-2126 (CD-Rom).

[4] Holland, J. K. (1975). Adaptation in Neural and Artificial Systems, University of

Michigan Press, Ann Arbor, MI.

[5] Sakawa, M. (2002). Genetic Algorithms and Fuzzy Multiobjective Optimization.

Kluwer Academic Publishers, Norwell, Massachusetts.

[6] Chan, W., Chua, D. K. H., and Kannan, G. (1996). “Construction Resource

Scheduling with Genetic Algorithms.” Journal of Construction Engineering and
Management, ASCE, 122(2): 125-132.

747

[7] Leu, S., and Yang, C. (1999). “GA-Based Multicriteria Optimal Model for
Construction Scheduling.” Journal of Construction Engineering and Management,
ASCE, 125(6): 420-427.

[8] Hegazy, T. (1999). “Optimization of Resource Allocation and Leveling Using Genetic

Algorithms.” Journal of Construction Engineering and Management, ASCE, 125(3):
167-175.

[9] Hegazy, T., and Kassab, M. (2003). “Resource Optimization Using Combined

Simulation and Genetic Algorithms.” Journal of Construction Engineering and
Management, ASCE, 129(6): 698-705.

[10] Hartmann, S. (1998). “A Competitive Genetic Algorithm for Resource-Constrained

Project Scheduling.” Naval Research Logistics, 45: 733-750.

[11] Lee, J.-K., and Kim, Y.-D. (1996). “Search Heuristics for Resource-Constrained

Project Scheduling.” The Journal of the Operational Research Society, 47(5): 678-
689.

[12] Dorndorf, U., and Pesch, E. (1995). “Evolution Based Learning in a Job Shop

Scheduling Environment.” Computers and Operations Research, 22: 25-40.

[13] De Jong, K. A. (1975). “An Analysis of the Behavior of a Class of Genetic Adaptive

Systems.” Ph.D. Dissertation, University of Michigan, Ann Arbor, Mich.

[14] Kelley, J. E. Jr. (1963). “The Critical-Path Method: Resources Planning and

Scheduling.” In J. F. Muth and G. L. Thompson (Eds.), Industrial Scheduling,
Prentice-Hall, New Jersey, 347-365.

[15] Bedworth, D. D., and Bailey, J. E. (1982). Integrated Production Control Systems-

Management, Analysis, Design, Wiley, New York.

[16] Zhuang, M., and Yassine, A. A. (2004). “Task Scheduling of Parallel Development

Projects using Genetic Algorithm.” Proceedings of ASME 2004 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference, Salt Lake City, Utah USA, September 28-October 2, 2004, 1-11.

[17] Kim, J.-L. (2006). “A multiheuristic approach to resource constrained project

scheduling: an adaptive hybrid genetic algorithm” Ph.D. Dissertation, University of
Florida, Gainesville, FL.

[18] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts.

[19] Shanmuganayagam, V. (1989). “Current Float Techniques for Resource

Scheduling.” Journal of Construction Engineering and Management, ASCE, 115(3):
401-411.

748

