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Abstract 
 
The objective of this research study is to develop the permutation-based genetic algorithm 
for solving the resource-constrained project scheduling problem in construction 
engineering by incorporating elitism into genetic algorithm. A key aspect of the algorithm 
was the development of the elitist roulette selection operator to preserve the best individual 
solution for the next generation so the improved solution can be obtained. Another notable 
characteristic is the application of the parallel schedule generation scheme to generate a 
feasible solution to the problem. Case studies with a standard test problem were presented 
to demonstrate the performance and accuracy of the algorithm. The computational results 
indicate that the proposed algorithm produces reasonably good solutions for the resource-
constrained project scheduling problem. 
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1. Introduction 
 
The demand of project scheduling software has continued to grow at an annual rate of 
almost 20% [1]. Project scheduling software packages often consider constrained 
resources. However, their capability to solve resource-constrained problems is either fragile 
or nonexistent [2]. Thus, there is a remarkable need for efficient solution approaches that 
allow for the complexities of real-world problems, which is an intended contribution of this 
research. 
 
The resource-constrained project scheduling problem (hereinafter RCPSP) have been 
solved with the various exact methods, priority-rule based heuristics, and various meta-
heuristic methods. First, the various exact methods employ some form of mathematical 
programming such as dynamic programming and zero-one programming or other analytical 
procedure such as implicit enumeration with branch and bound to search for the best 
possible solutions. Relative to the vast amount of research that has been conducted on 
heuristic procedures, optimal procedures have rarely been the focus of such extensive 
research. Considerable progress has been made to produce optimal results by depending on 
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strong assumptions for small-sized project networks. However, no optimal procedures have 
proven to be computationally feasible for large, complex projects that can occur in practice 
[3]. Therefore, heuristic and meta-heuristic approaches are needed for large-sized project 
networks. 
 
Second, priority-rule based heuristics employ some rule of thumb or experience to 
determine priorities among activities competing for available resources. They combine one 
or more priority rules and schedule generation scheme to generate one or more schedule. 
These heuristic procedures generally produce solutions for the RCPSP in a reasonable 
amount of time, even though the size of the project network is large. However, they have 
proven to be inconsistent with regard to the quality of results produced on project networks 
[3]. Finally, various meta-heuristic methods, such as genetic algorithm (GA), simulated 
annealing (SA), tabu search (TS), and ant colonies (AC), have been also applied to the 
RCPSP to overcome the drawbacks of the exact optimal methods and priority-rule based 
heuristics and to improve the performance of the existing meta-heuristic methods. 
 
The genetic algorithm (GA), a meta-heuristic and optimization technique, has emerged as a 
tool that is beneficial for a variety of study fields including construction applications since 
the introduction in the 1960’s by Holland [4]. GA has also attracted considerable attention 
in a number of fields not only as a methodology for optimization, adaptation, and learning, 
but also as optimization techniques for solving discrete optimization problems or other 
hard optimization problems [5]. GA has been used successfully to solve construction 
management problems, including resources scheduling with a small number of activities [6, 
7, 8, 9]. 
 
A permutation-based genetic algorithm proposed by Hartmann makes use of activity list 
representation [10]. The study also proposed additional two encodings, which include 
priority value based genetic algorithm similar to the work of Lee and Kim [11] and 
priority-rule based genetic algorithm similar to the work of [12]. From their computational 
results, the permutation-based encoding genetic algorithm outperformed two other 
encoding algorithms. 
 
This paper presents a new permutation-based elitist genetic algorithm (hereinafter PEGA) 
for solving the RCPSP in construction engineering. The proposed algorithm aims to 
allocate multiple available construction resources to activities of a single project to achieve 
the objective of minimizing the project duration. A key aspect of the algorithm was the 
development of the elitist roulette selection operator to preserve the best individual solution 
for the next generation so the improved solution can be obtained. Parallel schedule 
generation scheme was applied to generate a feasible solution to the problem. Case studies 
with a standard test problem were presented to demonstrate the performance and accuracy 
of the algorithm over other GA method under single and multiple resources. 
 
 
2. Objective function of RCPSP 
 
The RCPSP aimed to allocate the available resources to activities so as to find the shortest 
duration of a project within the constraints of precedence relationships. The assumptions 
underlying this problem were that the availability of resources is constrained to some 
maximum value, and that the project has to be completed using the given resources. As a 

740



  

result of the RCPSP, a schedule that shows the shortest duration with resource limits was 
created for a project network. The objective function was formulated for a permutation-
based elitist genetic algorithm for the RCPSP. As a constrained optimization problem, the 
RCPSP belongs to one type of sequencing problem. Therefore, the objective function for 
the algorithm is to minimize the project duration when constrained by precedence 
relationships among project activities and the availability of resources.  
 
 
3. Applying elitist into permutation-based genetic algorithm 
 
The main procedure of the PEGA was developed and implemented in this paper, as shown 
in Figure 1. Several operators were used in the development of the algorithm. They include 
(1) the random number generator for producing an initial population, (2) the parallel 
schedule generation scheme for calculating a fitness value of each individual, (3) the elitist 
roulette wheel selection operator for selecting a parent individual for the next generation, 
(4) the one-point crossover operator for exchanging parent string segments and 
recombining them to produce two resulting offspring individuals, and finally (5) the 
uniform mutation operator for playing a role of random local search which searches 
regardless of the direction of learning to obtain the better solution. PEGA algorithm is 
terminated if it meets either the number of generation or time to stop specified in the start 
phase. 
 

Start
(Input data and PEGA parameters)

End

Step 3: Selection/Reproduction
(Elitist roulette wheel selection operator)

Step 4: Crossover/Reproduction
(One-point crossover operator)

Step 6: Termination
conditions

(No. of Generation, Time to stop)

Yes

No

Step 2: Evaluation of the fitness value
(Parallel schedule generation scheme)

Step 1: Generation of initial population
(Random number generator)

Step 5: Uniform mutation

 
Figure 1: Main procedure of PEGA 
 
PEGA was developed by employing four basic operators: elite selection [13], roulette 
wheel selection [4], one-point crossover [10], and uniform mutation [5]. The initial 
population of possible solutions to the RCPSP was created to apply the algorithm in the 
very first step of global search. A fitness value of an individual in the initial population was 
calculated, using the parallel schedule generation scheme proposed by Kelley [14] and the 
one of Brooks [15]. The selection of the parent individuals was made through the elitist 
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roulette wheel selection operator for the next generation. The elitist roulette wheel selection 
operator is the combined operator using the elite selection and the roulette wheel selection. 
Using the parent individuals obtained from the selection operator, one-point crossover 
operator was performed by exchanging parent individual segments and then recombining 
them to produce two resulting offspring individuals. The uniform mutation operator was 
performed to play the role of random local search. 
 
 
3.1 Permutation-based encoding 
 
A schedule has to be represented to encode the RCPSP. In addition to the schedule 
representation, a schedule generation scheme needs to decode the schedule representation 
into a schedule. A schedule representation is a representation of a priority-structure among 
the activities. A solution for the RCPSP was represented in a chromosome that represented 
an activity sequence for the problem. A chromosome is also called an individual that was 
given by an activity sequence. Each gene in a chromosome stands for an activity number. 
An activity has a lower priority than all preceding activities in the sequence and a higher 
priority than all succeeding activities. Thus, an individual becomes precedence feasible 
permutation of the set of activities because an activity cannot comes after the position of 
one of its successors (predecessors) in the list used for the generation of an individual. A 
precedence feasible permutation was generated using random number generator developed 
in this research. 
 
This research adopted a permutation-based encoding that was appropriate for solving the 
RCPSP [10, 16]. An initial population composed of precedence feasible individuals was 
produced by the random number generator. It is notable that the random number generator 
simply provides precedence feasible solutions, but does not give the fitness value (the 
project duration), a possible starting and finishing time of an activity, and the feasibility of 
resource constraints. Random number generator, for example, generates an individual {2, 
7, 1, 6, 4, 3, 8, 9, 5, 11, 10} for 11 non-dummy activities. 
 
Worth noting is that the fitness function is different from the objective function for the 
clarification of a computation process of the fitness value. As mentioned previously, the 
objective function is to minimize the fitness function, which generates the fitness value of a 
project throughout the scheme process. The fitness function is to find the maximum value 
out of all fitness values of every activity to be scheduled in a project. The maximum value 
is obtained by comparing the finish time of the last activity and the fitness value of the 
activity just before the last activity. The parallel schedule generation scheme proposed by 
Kelley [14] and the one of Brooks [15] was utilized to calculate the fitness value of an 
individual. When all activities in an individual are scheduled, the fitness value is obtained 
from the maximum value between the finish time of the last activity and the fitness value 
of the activity just before the last activity. 
 
The purpose of applying the parallel schedule generation scheme to the individuals in a 
population was to obtain schedules that showed the resource profile and the project 
duration. It is important to note that a uniquely determined schedule (phenotype) computed 
using the parallel scheme can be related more than one individual (genotype). A uniquely 
determined schedule means that it is possible for several individuals to have the same 
fitness value, but their starting time should be totally different. The unique schedules in the 
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search space as genotypes may be related to the same schedule, which is the project 
duration for the RCPSP. 
 
The objective function for the RCPSP is to minimize the fitness function. Therefore, a 
transformation from the minimization function to a maximization function was needed to 
ensure that the individual selection process performs correctly. This research modified the 
transformation method proposed by Lee and Kim [11] by adding a new parameter named 
transformation power (TP) to their transformed objective function in order to emphasize 
low fitness values [17]. The addition of the transformation power showed how much the 
transformed fitness values can be emphasized by making the original fitness values low. 
 
 
3.2 Combining Elitist with Roulette Wheel Selection 
 
The elitist preserving selection called elitism proposed by De Jong [13] was adopted to 
combine with the roulette wheel selection operator in this research. The elitist roulette 
selection is operated using the procedure shown in Figure 2. Elitism first preserves the best 
individual generated up to generation t into the current generation t+1, if the fitness value 
of an individual in the current population is larger than that of every individual in the 
current population. The roulette wheel selection operator developed by Holland [4] has 
been employed, as used in many studies [7, 10]. The concept of the selection was to 
determine selection probability for each individual proportional to the fitness value. 
 

 
Figure 2: Procedure of elitist roulette selection operator 
 
 
3.3 One-Point Crossover Operator 
 
The goal of a crossover operator is to combine pieces of information coming from different 
individuals in the population. It is important to preserve good building blocks and maintain 
randomness and population diversity for searching non-redundant solutions [16]. The order 
of the first several activities is the key to preserve the whole individual, providing the basis 
for the remaining activities and deciding how good the order of the remaining activities 
will be to a certain degree. 
 
The one-point crossover operator is capable of preserving schemata in a more effective 
manner because it keeps the first half of both parents intact and is less random than UX3. 
The probability of disrupting short defining length is rather low, even though crossover 
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operation in the beginning of an individual is likely to disrupt schema [18]. The rationale 
for using the one-point crossover operator is that a precedence feasible offspring is 
generated if it is applied to precedence feasible parents [10, 16]. The theorem was proven 
by Hartmann [10]. 
 
 
3.4 Uniform Mutation Operator 
 
The goal of the uniform mutation is to exchange two neighboring genes without violating 
precedence relationship in order to create an individual that could not have been produced 
by the crossover operator. The uniform mutation operator was operated as follows: for each 
individual from a generation, the operator generates a real random number and then swaps 
an activity after pivot point with activity at pivot point if a random number is equal to or 
less than mutation probability. The operator can be ineffective because the genes in 
neighboring individual positions could be switched while still representing the same 
schedule. Therefore, it is important to note that a mutation on an individual does not 
necessarily change the related schedule because interchanging two activities that have the 
same start time in the activity sequence is likely to change the individual, but not the 
related schedule. 
 
 
4. Results and analysis  
 
PEGA was programmed using the JAVA programming language on the Windows XP 
operation system, and Microsoft® Office Excel 2003 was selected as the representation and 
analysis tool for the data. The parameters of the algorithm include population size, 
transformation power, crossover probability, and mutation probability for global search. 
Two different types of termination conditions can be determined to stop the run of the 
algorithm. They include the number of generations and timeout. Two output options were 
available for the analysis of data. They include full output and summary output. 
 
In order to test and verify the overall procedure of the PEGA, a case example of a small 
construction project schedule was extracted from the work of Shanmuganayagam [19]. 
Figure 3 shows the example of schedule network, which includes activity name, duration, 
and resource requirements. 
 

 
Figure 3: Example of schedule network 
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After preliminary studies, the parameter configurations were determined to obtain the best 
performance from the algorithm because the population size and various parameters were 
the critical elements for optimal performance. This research tested the algorithm on the 
example using both single and multiple resources in order to demonstrate the robustness of 
the current approach. 
 
 
4.1 Effect of Elitist on the Performance 
 
This section describes the effect of elitist on the performance of the algorithm by running 
PEGA on the case example of 11 non-dummy activities with single resource. The default 
set of the parameters as follows: the population size, transformation power, crossover and 
mutation probability were set to 30, 1.6, 0.5, and 0.03, respectively. The algorithm was 
terminated with the number of generation of 100 using the parallel scheme. Figure 4 shows 
the profile of the schedule obtained from the elitist individual, which was produced from 
the last generation of 100. The project duration was found at 38 days, which can be 
considered near-optimal solution to the example problem. 
 

 
Figure 4: Profile of the schedule produced by the elitist 
 
4.2 Comparison with other GA 
 
The case example was used to verify the mechanism of the PEGA. All activities of the 
project network were scheduled using just one resource with a fixed resource profile to 
make an impartial comparison with the results obtained from the work of Chan et al. [6]. 
The population size is set to 50 and the total number of generation was set to 40 
experimental runs so the total trial size of 2,000 was performed. After many trials, 
crossover rate and mutation rate were set to 0.5 and 0.03, respectively.  
 
Table 1 shows the various schedules in comparison to three schedules produced by GA-
scheduler [6]. The algorithm produced the project duration of 38 days, which is same as 
those obtained by the GA-scheduler. It also generated 1,426 unique schedules, which 
amounts to 71.30% of the total schedules of 2000. It took the total CPU time of 610 
milliseconds for the algorithm to solve the RCPSP with single resource. Worth noting is 
that the algorithm is able to provide several equally good and feasible scheduling 
alternatives, which indicate the similar result to GA-scheduler [6]. The remarkable thing 
about the algorithm is that it does not require applying any type of penalty factor since the 
schedules were uniquely determined by the algorithm. The algorithm does not also depend 
on any set of heuristic rules. 
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Table 1: Comparison of Various Schedules by Method 

Activity Starting times of activities obtained by 
GA-scheduler 

[6] 
PEGA 

(This research) No. Resource 
requirement 

S1 S2 S3 Elitist S1 S2 S3 
1 3 6 7 8 6 6 6 6 
2 6 0 0 0 0 0 0 0 
3 4 10 11 14 6 10 20 6 
4 2 15 15 19 14 12 10 10 
5 4 28 28 28 26 28 28 26 
6 2 6 7 8 14 12 10 8 
7 4 6 6 6 10 6 6 10 
8 2 17 18 18 24 22 22 24 
9 4 32 32 32 8 22 22 18 
10 5 22 22 22 32 32 32 32 
11 2 28 28 28 26 28 28 26 

 
 
4.3 Scheduling Project with Multiple Resources 
 
PEGA was run to take into account of the multiple resources to the same case example. 
Three different types of resources were considered. It is obvious that when multiple 
resources are required, project duration will make changes, depending on the resource 
availability and requirements. As the case of single resource, the resource availabilities are 
constant over the project duration and the resource availabilities of three resources are 
assumed to be 8, 1, and 1, respectively.  
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4

3 2

2 3 9 10

1 7 11

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Time (Days)

Resource 2 usages

1

0
2 6 4 5 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
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Resource 3 usages

1

0
1 8 3 11 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Time (Days)

Resource 1 Limit = 8

Resource 2 Limit = 1

Resource 3 Limit = 1

Delayed due to conflict with R3Delayed due to conflict with R2

Fitness value (Project duration)

t = 6 t = 10t = 0 t = 22t = 20 t = 28
t = 30

t = 38t = 32 t = 48 t = 54

 
Figure 5: Scheduling with multiple resources 
 
After many trials, the population size, crossover rate, and mutation rate were set to 50, 0.5, 
and 0.03, respectively. The overall fitness value, which is the project duration of the 
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individual considered, was obtained for multiple resources using the parallel schedule 
generation scheme. Figure 5 shows the result of scheduling the case example with multiple 
resources. The project duration was 54 days that was obtained by the partial schedule. As a 
result of scheduling with multiple resources, it was found that activity 9 was delayed for 
two days due to conflict with R2. It was also found that activities 3 and 10 were postponed 
for 6 and 10 days due to resource conflicts with R3, respectively. 
 
 
5. Conclusion 
 
This paper addressed the permutation-based elitist genetic algorithm for solving multiple 
resource-constrained project scheduling problem. Compared with other genetic algorithm 
method, the algorithm showed that the elitist preserves the best individual solution for the 
next generation so the improved solution can be obtained. It was also found that the 
algorithm is able to explore and exploit several near-optimal solutions, which may include 
the optimal solution, because heuristic methods do not generally provide the optimal 
solution. The algorithm is useful to solve the multiple resource-constrained project 
scheduling problem. Several equally good scheduling alternatives generated by the 
algorithm provide more information for decision making than the only one schedule 
produced by the heuristic method. 
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