• 제목/요약/키워드: Improved Welding Quality

검색결과 62건 처리시간 0.028초

금속이행을 고려한 GMA 용접 시스템의 동특성 해석 (Dynamic behavior of GMA considering metal transfer)

  • 박세홍;김면희;강세령;최상균;이상룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.565-568
    • /
    • 2002
  • Welding variables and conditions in gas metal arc welding (GMAW) effect on the weld quality and productivity, extensive research efforts have been made to analyze the welding variables and conditions. In this study dynamic behavior of GMAW system is investigated using the characteristic equations of the power supply, wire and welding arc. Characteristic equation of wire is modified to include the effect of droplets attached at the electrode tip. The dynamic characteristics of arc length, current, voltage with respect to the step, ramp inputs of CTWD was simulated, seam tracking procedure using arc sensor was simulated with variable V-Groove geometries and weaving frequencies. From results of simulation, some predictions about dynamic characteristics of GMAW and welding process are available. The proposed simulator and results appear to be utilized to determine the proper welding conditions, to be improved by considering power supply dynamic characteristics.

  • PDF

고강도 아연도금 강판의 아크 용접시 보호가스의 비율에 따른 스패터량에 대한 고찰 (Amount of Spatter in Arc Welding for High-Strength Galvanized Steel According to Shielding Gas Composition)

  • 정영철;조영태;정윤교
    • 한국기계가공학회지
    • /
    • 제15권1호
    • /
    • pp.110-115
    • /
    • 2016
  • The need for high-strength galvanized steel has recently increased because of the increased number of car consumers who want improved efficiency and exterior quality. High-strength galvanized steel with high corrosion resistance improves the durability of products and exterior quality. Furthermore, the gilt of zinc does not come off during machining because of the fine adhesive property of zinc. When these are welded, zinc has a lower melting temperature than iron, so zinc is more quickly vaporized than iron. Vaporized zinc can stick to electrodes, which increases spatter in welding transportation. Created spatter can enter the molten pool and develop into inner defects or blowholes and pits. Scattered spatter sticks to the product, which leads to the secondary cost of spatter removal. Therefore, in this study, comparisons of amounts of spatter generated are conducted according to the composition of shielding gas in the MIG and CMT processes to find optimal welding parameters.

모듈화를 위한 차체 볼팅 조립구조에 대한 고찰 (The Review of Bolt-Assembled Car body Structure for Modularization)

  • 최원호;장동화;전시현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1661-1667
    • /
    • 2008
  • Recently, a rolling stock has been requiring more efficient manufacturing method than welding for the improved quality and the enhanced fabrication of car body structure. As an alternative, modularization of car body structure is being studied. Accordingly, rolling stock manufacturers need to make it possible to develop a variety of rolling stock vehicles made from modularized sub-blocks in order to meet various customer's demands. The bolt-assembled car body structure for modularization is known to have many advantages over the existing weld-assembled method and is free from the possible welding defects, such as welds between dissimilar metals, crack, deformation and loss of strength. Consequently, we can have the improved overall quality, the reduced man powers for assembly and the satisfied strength of car body structure. The review is about the bolt-assembled car body structure for modularization to assure global competitiveness and an enhanced technique in terms of assembly methodology of car body structure.

  • PDF

경수로 원전연료용 지르칼로이 지지격자체의 용접품질 분석 (Welding Quality Analysis on the Welding Parts of the Zircaloy Spacer Grid Assembly for PWR Fuel Assembly)

  • 송기남;김수성;한형준
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년 추계학술발표대회 개요집
    • /
    • pp.125-127
    • /
    • 2006
  • A spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the nuclear fuel assembly for pressurized water reactors(PWRs). The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral loads acting on the nuclear fuel assembly so as to keep the nuclear fuel assembly straight. To meet this requirement, it is necessary to weld the welding parts carefully and precisely. In this study, weld qualities such as, weld bead size, penetration, spatter, etc. manufactured by various welders were compared and analyzed. Comparison results show that the weld qualities could be improved by selecting the optimal welding condition and also improving the welding technique.

  • PDF

원자력 발전 주기기 제작에 적용되는 용접공정 (Welding process for manufacturing of Nuclear power main components)

  • 정인철;김용재;심덕남
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.43-46
    • /
    • 2010
  • As the nuclear power plant has been constructed continuously for several decades in Korea, the welding technology for components manufacturing and installation has been improved largely. Standardization for weld test and qualification was also established systematically according to the concerned code. The welding for the main components requires the high reliability to keep the constant quality level, which means the repeatability of weld quality. Therefore the weld process qualified by thorough test and evaluation is able to be applied for manufacturing. Narrow gap SAW and GTAW process are usually applied for girth seam welding of pressure vessel like Reactor vessel, steam generator, and etc. For the surface cladding with stainless steel and Inconel material, strip welding process is mainly used. Inside cladding of nozzles is additionally applied with Hot wire GTAW and semi-auto welding process. Especially the weld joint having elliptical weld line on curved surface needs a specialized weld system which is automatically rotating with adjusting position of the head torch. The small sized pipe, tube, and internal parts of reactor vessel requests precise weld processes like an automatic GTAW and electron beam welding. Welding of dissimilar materials including Inconel690 material has high possibility of weld defects like a lack of fusion, various types of crack. To avoid these kinds of problem, optimum weld parameters and sequence should be set up through the many tests. As the life extension of nuclear power plant is general trend, weld technologies having higher reliability is required gradually. More development of specialized welding systems, weld part analysis and evaluation, and life prediction for main components should be taken into a consideration extensively.

  • PDF

시각센서를 이용한 파이프라인 자동용접 시스템 (Automatic Pipeline Welding System using Laser Vision Sensor)

  • 문형순;김형식;김종철;김종준;김용백;추정복;최승면
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.324-325
    • /
    • 2005
  • The primary aim of this paper is to develop an automated welding system capable of adapting to variation in the weld seam center in order to allow higher welding speeds and improved welding quality by using a laser vision sensor. The system is designed to compensate for production problems such as pipe ovality, variation in bevel geometry and track misalignment.

  • PDF

LNG 탱크의 주름진 내벽박판용 자동용접시스템의 개발에 관한 연구 (A study on development of automatic welding system for corrugated membranes of the LNG tank)

  • 유제용;유원상;나석주;강계형;한용섭
    • Journal of Welding and Joining
    • /
    • 제14권1호
    • /
    • pp.99-106
    • /
    • 1996
  • Development of an automatic TIG welding system incorporating a vision sensor and torch control mechanism leads to an improved welding quality and greater production efficiency. The automatic welding system should be greatly restricted in its size and weight for the LNG(Liquefied Natural Gas) storage tank and also provide a unique torch rotating mechanism which keeps the torch tip in the constant position while the angle is changed continuously to maintain the welding torch substantially perpendicular to the weld line. The developed system is driven by two translation axes X, Z and one rotational axis. A moving line window method is adopted to the image recognition of the corrugated membranes with specular reflection. This method decides original laser stripe patterns in image which is affected by multi-reflection. A self-teaching algorithm, which guides the automatic welding machine with the information provided by the CCD camera without any previous learning of a reference trajectory, was developed for tracking the corrugated membrane of the LNG tank along the weld line.

  • PDF

Parameter Design and Analysis for Aluminum Resistance Spot Welding

  • Cho, Yong-Joon;Li, Wei;Hu, S. Jack
    • Journal of Welding and Joining
    • /
    • 제20권2호
    • /
    • pp.102-108
    • /
    • 2002
  • Resistance spot welding of aluminum alloys is based upon Joule heating of the components by passing a large current in a short duration. Since aluminum alloys have the potential to replace steels fur automobile body assemblies, it is important to study the process robustness of aluminum spot welding process. In order to evaluate the effects of process parameters on the weld quality, major process variables and abnormal process conditions were selected and analyzed. A newly developed two-stage, sliding-level experiment was adopted fur effective parameter design and analysis. Suitable ranges of welding current and button diameters were obtained through the experiment. The effects of the factors and their levels on the variation of acceptable welding current were considered in terms of main effects. From the results, it is concluded that any abnormal process condition decreases the suitable current range in the weld lobe curve. Pareto analysis of variance was also introduced to estimate the significant factors on the signal-to-noise (S/N) ratio. Among the six factors studied, fit-up condition is found to be the most significant factor influencing the SM ratio. Using a Pareto diagram, the optimal condition is determined and the SM ratio is significantly improved using the optimal condition.

ENHANCING TIG WELD PERFORMANCE THROUGH FLUX APPLICATION ATIG AND FBTIG PROCESSES

  • Marya, S.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.70-75
    • /
    • 2002
  • The penetration potential of TIG welding in one single run is limited, though the process itself generates high quality welds with good weld cosmetics. This is one of the main reasons, which has contributed to its development in high duty applications such as those encountered in aeronautical, aerospace, nuclear & power plant applications. For these applications, stainless steels, titanium k nickel based alloys are most often used. As these materials remain very sensible to weld heat input k atmospheric pollution, stringent processing conditions are imposed. For example welding of titanium alloys requires argon shielding of weld zone and for 5 mm thick plates multi-pass runs & filler additions are required. This multi-run operation not only raises the welding cost, but also increases defect risks. In recent years, extensive interest has been raised by the possibility to increase weld penetrations through flux applications & the process is designated ATIG-activated TIG, or FBTIG-flux bounded TIG. The improved welding performance of such flux assisted TIG is related to arc constriction and surface tension effects on weld pool. The research work by authors has lead to the formulation of welding fluxes for stainless steels k titanium alloys with TIG Process. These fluxes are now commercialized & some applications in industry have already been carried out. FBTIG for aluminum has been proposed with silica application for AC mode TIG welding. The paper highlights the fundamentals of flux role in TIG welding and illustrates some industrial applications.

  • PDF

잠호용접부 균열방지를 위한 용접 플락스 및 시공기법 개발 (Development of Welding Flux and Process for Prevention of Cold Cracking in SAW Weld Metal)

  • 최기영;김찬;김영필
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2007년도 특별논문집
    • /
    • pp.118-127
    • /
    • 2007
  • SAW(Submerged Arc Welding) process is generally applied to a wide range of welding area in the fabrication of steel structure. This process has a good characteristic properties such as the high quality of welds and the high deposition rates, but in case of welding on a thick steel plate, it also has higher cold crack susceptibility than that of a thin steel plate. The purpose of this research is to find the main factor of crack generation and clarify the countermeasure for crack prevention, and then establish the optimum welding condition in a heavy thick steel plate. The results of this study are as follows, 1. The cause of crack generation is found the diffusible hydrogen penetrated into weld metal by decomposition of the remained moisture in SAW flux during welding. 2. For the removal of diffusible hydrogen, the raw materials of SAW flux are to be dehydrated at the high temperature in the initial manufacturing stage. 3. Mechanical properties of weld metal welded with the dehydrated SAW flux were evaluated very excellent, furthermore the weld metal has been proved to have low diffusible hydrogen content with 3.1ml /100g. 4. The weldability and quality welded with thick steel plates were improved by establishing the new optimum welding condition.

  • PDF