• 제목/요약/키워드: Improved IAFC(Integrated Adaptive Fuzzy Clustering) Fuzzy Neural Network

검색결과 4건 처리시간 0.015초

비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates)

  • 김용수
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.800-804
    • /
    • 2005
  • 본 논문에서는 LVQ(Learning )rector Quantization)을 퍼지화한 새로운 퍼지 학습 법칙을 제안하였다. 퍼지 학습 법칙 3은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데, 기존의 LVQ와는 달리 비대칭인 학습률을 사용하였다. 기존의 LVQ에서는 분류가 맞거나 틀렸을 때 같은 학습률을 사용하고 부호만 달랐으나, 새로운 퍼지 학습 법칙에서는 분류가 맞거나 틀렸을 때 부호가 다를 뿐만 아니라 학습률도 다르다. 이 새로운 퍼지 학습 법칙을 무감독 신경회로망인 improved IAFC (Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하여 감독 신경회로망으로 변형하였다. Improved IAFC 신경회로망은 유연성이 있으면서도 안정성이 있다. 제안한 supervised IAFC 신경회로망 3의 성능과 오류 역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데, supervised IAFC 신경회로망 3가 오류 역전파 신경회로망보다 성능이 우수하였다.

개선된 IAFC 퍼지 신경회로망을 이용한 차량 번호판 인식 (Licence Plate Recognition Using Improved IAFC Fuzzy Neural Network)

  • 이시현;최시영;이세열;김용수
    • 한국지능시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.6-12
    • /
    • 2009
  • 본 논문에서는 입력된 차량영상에서 번호판을 추출하여 인식하는 시스템을 제안하였다. 개선된 IAFC 퍼지 신경회로망을 사용하여 자동차 번호판의 후보영역을 추출하고, 형태학적 필터를 사용하여 잡음을 제거하였다. 추출한 자동차 번호판을 정형화하기 위하여 허프 변환과 기하학적 변환을 사용하였다. 투영기법을 사용하여 분리한 숫자를 오류역전파 신경회로망을 사용하여 인식하였다.

비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates)

  • 김용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.101-105
    • /
    • 2005
  • 본 논문에서는 LVQ(Learning Vector Quantization)을 퍼지화한 새로운 퍼지 학습 법칙을 제안하였다. 퍼지 LVQ 학습 법칙 3은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데, 기존의 LVQ와는 달리 비대칭인 학습률을 사용하였다. 기본의 LVQ에서는 분류가 맞거나 틀렸을 때 같은 학습률을 사용하고 부호만 달랐으나, 새로운 퍼지 학습 법칙에서는 분류가 맞거나 틀렸을 때 부호가 다를 뿐만 아니라 학습률도 다르다. 이 새로운 퍼지 학습 법칙을 무감독 신경회로망인 improved IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하여 감독 신경회로망으로 변형하였다. Improved IAFC 신경회로망은 유연성이 있으면서도 안정성이 있다. 제안한 supervised IAFC 신경회로망 3의 성능과 오류 역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC 신경회로망 3가 오류 역전파 신경회로망보다 성능이 우수하였다.

  • PDF

퍼지 신경회로망을 이용한 칼라 물체 추출 (Colored Object Extraction using Fuzzy Neural Network)

  • 김용수;정승원
    • 한국지능시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.226-231
    • /
    • 2007
  • 본 논문에서는 퍼지 신경회로망을 사용하여 영상에서 색상을 가진 물체를 배경으로부터 추출해내는 방법을 제시하였다. 퍼지 신경회로망은 영상을 2개의 부류로 구성되어 있는 것으로 보고, 임계 파라미터를 조종하여 물체 영역의 Cb와 Cr의 대표값들과 배경영역의 Cb와 Cr의 대표값들을 추출하였다. 이 대표값들을 이용하여 색상을 가진 물체를 배경으로부터 추출하였다. 제안한 방법은 물체의 위치 및 크기와 밝기에 상관없이 물체를 추출하였다. 여러 가지 영상들을 사용하여 제안한 방법의 성능과 주관적 임계값을 사용한 방법의 성능을 비교하였다. 또한 영상들에 잡음을 첨가하여 제안한 방법의 성능과 주관적 임계값을 사용한 방법의 물체를 추출하는 능력을 비교하였다.