• Title/Summary/Keyword: Improved Genetic Algorithm

Search Result 341, Processing Time 0.027 seconds

Stabilization of Ball-Beam System using RVEGA SMC (RVEGA SMC를 이용한 Ball-Beam 시스템의 안정화)

  • Kim, Tae-Woo;Lee, Joon-Tark
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1327-1334
    • /
    • 1999
  • The stabilization control of ball-beam system is difficult because of its nonlinearity and structural unstability. Futhermore, a series of classical methods such as the PID and the full state feedback controller(FSFC) based on the local linearizations have narrow stabilizable regions. At the same time, the fine tunings of their gain parameters are also troublesome. Therefore, in this paper, three improved design techniques of stabilization controller for a ball-beam system were proposed. These parameter tuning methods in the double PID controller(DPIDC), the FSFC and the a sliding mode controller(SMC) were dependent upon the Real Value Elitist Genetic Algorithm (RVEGA). Finally, by applying the DPIDC, the FSFC and the Real Variable Elitist Genetic Algorithm based Sliding Mode Control(RVEGA SMC) to the stabilizations of a ball-beam system, the performances of the RVEGA SMC technique were showed to be superior to those of two other type controllers.

  • PDF

Ant Colony Optimization Approach to the Utility Maintenance Model for Connected-(r, s)-out of-(m, n) : F System ((m, n)중 연속(r, s) : F 시스템의 정비모형에 대한 개미군집 최적화 해법)

  • Lee, Sang-Heon;Shin, Dong-Yeul
    • IE interfaces
    • /
    • v.21 no.3
    • /
    • pp.254-261
    • /
    • 2008
  • Connected-(r,s)-out of-(m,n) : F system is an important topic in redundancy design of the complex system reliability and it's maintenance policy. Previous studies applied Monte Carlo simulation and genetic, simulated annealing algorithms to tackle the difficulty of maintenance policy problem. These algorithms suggested most suitable maintenance cycle to optimize maintenance pattern of connected-(r,s)-out of-(m,n) : F system. However, genetic algorithm is required long execution time relatively and simulated annealing has improved computational time but rather poor solutions. In this paper, we propose the ant colony optimization approach for connected-(r,s)-out of-(m,n) : F system that determines maintenance cycle and minimum unit cost. Computational results prove that ant colony optimization algorithm is superior to genetic algorithm, simulated annealing and tabu search in both execution time and quality of solution.

RELIABILITY ESTIMATION AND RBDO USING KRIGING METAMODEL AND GENETIC ALGORITHM

  • Cho, Tae-Min;Lee, Byung-Chai
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1016-1021
    • /
    • 2008
  • In this study, effective methods for reliability estimation and reliability-based design optimization(RBDO) are proposed using kriging metamodel and genetic algorithm. In our previous study, we proposed the accurate method for reliability estimation using two-staged kriging metamodel and genetic algorithm. In this study, the possibility of applying the previously proposed method to RBDO is examined. The accuracy of that method is much improved than the first order reliability method with similar efficiency. Finally, the effective method for RBDO is proposed and applied to numerical examples. The results are compared to the existing RBDO methods and shown to be very effective and accurate.

  • PDF

Self-Organizing Fuzzy Controller Using Command Fusion Method and Genetic Algorithm

  • Na, Young-Nam;Choi, Wan-Gyu;Lee, Sung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.242-247
    • /
    • 2002
  • According to increase of the factory-automation(FA) in the field of production, the importance of the autonomous guided vehicle's(AGV) role has also increased. This paper is about an active and effective controller which can flexibly prepare for changeable circumstances. For this study, research about an behavior-based system evolving by itself is also being considered. In this Paper, we constructed an active and effective AGV fuzzy controller to be able to carry out self-organization. To construct it, we tuned suboptimally membership function using a genetic algorithm(GA) and improved the control efficiency by self-correction and the generation of control rules.

Design Optimization of a High Specific Speed Francis Turbine Using Multi-Objective Genetic Algorithm

  • Nakamura, Kazuyuki;Kurosawa, Sadao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.102-109
    • /
    • 2009
  • A design optimization system for Francis turbine was developed. The system consists of design program and CFD solver. Flow passage shapes are optimized automatically by using the system with Multi-Objective Genetic Algorithm (MOGA). In this study, the system was applied to a high specific speed Francis turbine (nSP = 250m-kW). The runner profile and the draft tube shape were optimized to decrease hydraulic losses. As the results, it was shown that the turbine efficiency was improved in wide operating range, furthermore, the height of draft tube was reduced with the hydraulic performance kept.

Integrated Vehicle Routing Model for Multi-Supply Centers Based on Genetic Algorithm (유전자알고리즘 및 발견적 방법을 이용한 차량운송경로계획 모델)

  • 황흥석
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.3
    • /
    • pp.91-102
    • /
    • 2000
  • The distribution routing problem is one of the important problems in distribution and supply center management. This research is concerned with an integrated distribution routing problem for multi-supply centers based on improved genetic algorithm and GUI-type programming. In this research, we used a three-step approach; in step 1 a sector clustering model is developed to transfer the multi-supply center problem to single supply center problems which are more easy to be solved, in step 2 we developed a vehicle routing model with time and vehicle capacity constraints and in step 3, we developed a GA-TSP model which can improve the vehicle routing schedules by simulation. For the computational purpose, we developed a GUI-type computer program according to the proposed methods and the sample outputs show that the proposed method is very effective on a set of standard test problems, and it could be potentially useful in solving the distribution routing problems in multi-supply center problem.

  • PDF

A Novel Image Classification Method for Content-based Image Retrieval via a Hybrid Genetic Algorithm and Support Vector Machine Approach

  • Seo, Kwang-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.75-81
    • /
    • 2011
  • This paper presents a novel method for image classification based on a hybrid genetic algorithm (GA) and support vector machine (SVM) approach which can significantly improve the classification performance for content-based image retrieval (CBIR). Though SVM has been widely applied to CBIR, it has some problems such as the kernel parameters setting and feature subset selection of SVM which impact the classification accuracy in the learning process. This study aims at simultaneously optimizing the parameters of SVM and feature subset without degrading the classification accuracy of SVM using GA for CBIR. Using the hybrid GA and SVM model, we can classify more images in the database effectively. Experiments were carried out on a large-size database of images and experiment results show that the classification accuracy of conventional SVM may be improved significantly by using the proposed model. We also found that the proposed model outperformed all the other models such as neural network and typical SVM models.

Single-Machine Total Completion Time Scheduling with Position-Based Deterioration and Multiple Rate-Modifying Activities

  • Kim, Byung-Soo;Joo, Cheol-Min
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.4
    • /
    • pp.247-254
    • /
    • 2011
  • In this paper, we study a single-machine scheduling problem with deteriorating processing time of jobs and multiple rate-modifying activities which reset deteriorated processing time to the original processing time. In this situation, the objective function is to minimize total completion time. First, we formulate an integer programming model. Since the model is difficult to solve as the size of real problem being very large, we design an improved genetic algorithm called adaptive genetic algorithm (AGA) with spontaneously adjusting crossover and mutation rate depending upon the status of current population. Finally, we conduct some computational experiments to evaluate the performance of AGA with the conventional GAs with various combinations of crossover and mutation rates.

Patch Antenna Shape Design Using the Genetic Algorithm (유전 알고리즘을 이용한 패치 안테나 형상 설계)

  • Song, Sung Moon;Kim, Cheolwoong;Lee, Heeseung;Yoo, Jeonghoon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.2
    • /
    • pp.45-49
    • /
    • 2014
  • This study deals with obtaining the optimal shape of a patch antenna via the topology optimization method in order to enhance its radiation efficiency. The genetic algorithm scheme is proposed for the optimization process to satisfy the design objective. As a result, the optimal patch shape through the proposed process shows highly improved radiation efficiency and reduced scattered effects. Commercial package COMSOL and Matlab programming are employed for the entire optimization and analysis processes.

Vibration-based damage detection in beams using genetic algorithm

  • Kim, Jeong-Tae;Park, Jae-Hyung;Yoon, Han-Sam;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.263-280
    • /
    • 2007
  • In this paper, an improved GA-based damage detection algorithm using a set of combined modal features is proposed. Firstly, a new GA-based damage detection algorithm is formulated for beam-type structures. A schematic of the GA-based damage detection algorithm is designed and objective functions using several modal features are selected for the algorithm. Secondly, experimental modal tests are performed on free-free beams. Modal features such as natural frequency, mode shape, and modal strain energy are experimentally measured before and after damage in the test beams. Finally, damage detection exercises are performed on the test beam to evaluate the feasibility of the proposed method. Experimental results show that the damage detection is the most accurate when frequency changes combined with modal strain-energy changes are used as the modal features for the proposed method.