• Title/Summary/Keyword: Improved APF

Search Result 22, Processing Time 0.022 seconds

A Study on the Single Phase Voltage-Controlled Active Power Filter for Power Quality Improvement (전력품질 개선을 위한 단상 전압제어형 능동전력필터 시스템에 관한 연구)

  • 손진근
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.5
    • /
    • pp.238-245
    • /
    • 2003
  • In this paper, a single Phase voltage source voltage-controlled active power filter(APF) for power quality improvement was proposed. The proposed APF has the performance of harmonic suppression and unity power factor correction. The performance of harmonic suppression can be obtained by controlling the waveshape of the APF output voltage to be sine wave. And, unity power factor is controlled by the reactive power control loop of the APF output. Simulation and experimental results using diode rectifier showed that the voltage-controlled APF, unlike the current-controlled APF, can reduce the voltage harmonics as well as current harmonics. Also the results showed that the input dover factor and power quality were greatly improved.

The APF System to reduce both Voltage and Current Harmonics (전압 및 전류고조파 동시 저감을 위한 APF 시스템)

  • Shon, Jin-Geun;Kim, Byung-Jin;Na, Chae-Dong;Lee, Sung-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.46-48
    • /
    • 2003
  • A single phase voltage-controlled active power filter(APF) is introduced to improve power quality and to reduce harmonic generated from nolinear loads. Real and reactive power control scheme was addressed using a new power circuit model. By analyzing the reactive power, a unit power factor control scheme was proposed. Simulation and experiment results using a nonlinear diode rectifier showed that the voltage-controlled APF, unlike the current-controlled APF, can reduce the voltage harmonics as well as current harmonics. Also the results showed that the input power factor was greatly improved.

  • PDF

Novel Control Strategy for a UPQC under Distorted Source and Nonlinear Load Conditions

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.161-169
    • /
    • 2013
  • This paper proposes a novel control strategy for a unified power quality conditioner (UPQC) including a series and a shunt active power filter (APF) to compensate the harmonics in both the distorted supply voltage and the nonlinear load current. In the series APF control scheme, a proportional-integral (PI) controller and a resonant controller tuned at six multiples of the fundamental frequency of the network ($6{\omega}_s$) are performed to compensate the harmonics in the distorted source. Meanwhile, a PI controller and three resonant controllers tuned at $6n{\omega}_s$(n=1, 2, 3) are designed in the shunt APF control scheme to mitigate the harmonic currents produced by nonlinear loads. The performance of the proposed UPQC is significantly improved when compared to that of the conventional control strategy thanks to the effective design of the resonant controllers. The feasibility of the proposed UPQC control scheme is validated through simulation and experimental results.

Parallel Control of Shunt Active Power Filters in Capacity Proportion Frequency Allocation Mode

  • Zhang, Shuquan;Dai, Ke;Xie, Bin;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.419-427
    • /
    • 2010
  • A parallel control strategy in capacity proportion frequency allocation mode for shunt active power filters (APFs) is proposed to overcome some of the difficulties in high power applications. To improve the compensation accuracy and overall system stability, an improved selective harmonic current control based on multiple synchronous rotating reference coordinates is presented in a single APF unit, which approximately implements zero steady-state error compensation. The combined decoupling strategy is proposed and theoretically analyzed to simplify selective harmonic current control. Improved selective harmonic current control forms the basis for multi-APF parallel operation. Therefore, a parallel control strategy is proposed to realize a proper optimization so that the APFs with a larger capacity compensate more harmonic current and the ones with a smaller capacity compensate less harmonic current, which is very practical for accurate harmonic current compensation and stable grid operation in high power applications. This is verified by experimental results. The total harmonic distortion (THD) is reduced from 29% to 2.7% for a typical uncontrolled rectifier load with a resistor and an inductor in a laboratory platform.

Design of Improved Active Power Filter using Discrete Variable Structure Control (DVSC를 이용한 개선된 APF의 설계)

  • Park, Hae-Won;Kim, Sang-Woo;Han, Wun-Dong;Kim, Beung-Jin;Jeon, Hee-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1312-1314
    • /
    • 2000
  • In this paper, voltage control APF(Active Power Filter) is introduced to improve power factor and reduce harmonic, generated from nonlinear load. The voltage controlled APF which is consisted of inverter and passive filter operates with nonlinear load simultaneously. According to the results of simulation, it is proved that the proposed system has the performance of improving power factor and reducing harmonics.

  • PDF

A Study to Propose Closed-form Approximations of Seismic Hazard (지진 재해도의 닫힌 근사식 제안에 관한 연구)

  • Kwag, Shinyoung;Hahm, Daegi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.245-251
    • /
    • 2018
  • In this paper, we address some issues in existing seismic hazard closed-form equations and present a novel seismic hazard equation form to overcome these issues. The presented equation form is based on higher-order polynomials, which can well describe the seismic hazard information with relatively high non-linearity. The accuracy of the proposed form is illustrated not only in the seismic hazard data itself but also in estimating the annual probability of failure (APF) of the structural systems. For this purpose, the information on seismic hazard is used in representative areas of the United States (West : Los Angeles, Central : Memphis and Kansas, East : Charleston). Examples regarding the APF estimation are the analyses of existing platform structure and nuclear power plant problems. As a result of the numerical example analyses, it is confirmed that the higher-order-polynomial-based hazard form presented in this paper could predict the APF values of the two example structure systems as well as the given seismic hazard data relatively accurately compared with the existing closed-form hazard equations. Therefore, in the future, it is expected that we can derive a new improved APF function by combining the proposed hazard formula with the existing fragility equation.

Immune Regulating Effect of Polysaccharide Fraction from Sea Hare (Aplysia kurodai) (군소(Aplysia kurodai)에서 추출한 다당 분획물의 면역 조절 효과)

  • Park, Si-Hyang;Choung, Se-Young;Choi, Yeung-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.3
    • /
    • pp.372-378
    • /
    • 2011
  • We extracted polysaccharide from the sea hare, Aplysia kurodai, purified it partially, and experimented its immune response using the human blood lymphocytes and macrophage cell lines. Aplysia kurodai polysaccharide fraction (APF) improved the growth of the T cell (Jurkat) up to 40% by treatment for 48 hours, and decreased the growth of blood cancer, Jiyoye cell line. The APF on RAW 264.7 cell also increased interleukin-12 up to 47%. In contrast, the secretion of interleukin-2 and interferon-gamma by treatment of only APF or APF and concanavalin A on Jurkat for 24 hours and 48 hours didn't influence significantly. These results suggest that the APF has possible immune regulating ability.

PLL for Unbalanced Three-Phase Utility Voltage using Positive Sequence Voltage Observer (정상분 전압 관측기를 이용한 불평형 3상 전원의 PLL)

  • Kim, Hyeong-Su;Choi, Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.145-151
    • /
    • 2008
  • This paper proposes the PLL method using positive sequence voltage which is estimated by full-order state observer to find an accurate phase angle under the condition of unbalanced utility voltage. The proposed method uses the full-order state observer instead of existing method(APF All Pass Filter) to find a positive sequence of a utility voltage and this proposed method improves transient response of an estimated phase angle when a three-phase utility voltage becomes unbalanced. To compare proposed method withexisting method, experiments have been done for a phase angle detection of utility voltage when a three-phase utility voltage becomes unbalanced. Their results show that transient state response of proposed method is improved.

Analysis and Application of Repetitive Control Scheme for Three-Phase Active Power Filter with Frequency Adaptive Capability

  • Sun, Biaoguang;Xie, Yunxiang;Ma, Hui;Cheng, Li
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.618-628
    • /
    • 2016
  • Active power filter (APF) has been proved as a flexible solution for compensating the harmonic distortion caused by nonlinear loads in power distribution power systems. Digital repetitive control can achieve zero steady-state error tracking of any periodic signal while the sampling points within one repetitive cycle must be a known integer. However, the compensation performance of the APF would be degradation when the grid frequency varies. In this paper, an improved repetitive control scheme with frequency adaptive capability is presented to track any periodic signal with variable grid frequency, where the variable delay items caused by time-varying grid frequency are approximated with Pade approximants. Additionally, the stability criterion of proposed repetitive control scheme is given. A three-phase shunt APF experimental platform with proposed repetitive control scheme is built in our laboratory. Simulation and experimental results demonstrate the effectiveness of the proposed repetitive control scheme.

Accurate Current Reference Generator for Active Power Filters (능동전력필터의 정밀 기준신호 발생기)

  • Bae Byung-Yeol;Jon Young-Soo;Han Byung-Moon;Soh Yong-Choel
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.575-578
    • /
    • 2004
  • The performance of an active power filter(APF) depends on the inverter characteristic, the control method, and the accuracy of reference signal generator. The accuracy of reference generator is the most critical item to determine the performance of active power filter. This paper introduces a novel reference signal generator composed of improved adaptive predictive filter. The performance of proposed reference signal generator was first verified through a simulation with MATLAB. Furthermore, the application of feasibility was evaluated through experimenting with a single-phase APF prototype based on the proposed reference generator, which was implemented using the TMS320C31 floating-point signal processor. Both simulations and experimental results confirm that our reference signal generator can be used successfully in practical active power filters.

  • PDF