KSII Transactions on Internet and Information Systems (TIIS)
/
제15권5호
/
pp.1814-1828
/
2021
Low-light image enhancement is a key technique to overcome the quality degradation of photos taken under scotopic vision illumination conditions. The degradation includes low brightness, low contrast, and outstanding noise, which would seriously affect the vision of the human eye recognition ability and subsequent image processing. In this paper, we propose an approach based on deep learning and Retinex theory to enhance the low-light image, which includes image decomposition, illumination prediction, image reconstruction, and image optimization. The first three parts can reconstruct the enhanced image that suffers from low-resolution. To reduce the noise of the enhanced image and improve the image quality, a super-resolution algorithm based on the Laplacian pyramid network is introduced to optimize the image. The Laplacian pyramid network can improve the resolution of the enhanced image through multiple feature extraction and deconvolution operations. Furthermore, a combination loss function is explored in the network training stage to improve the efficiency of the algorithm. Extensive experiments and comprehensive evaluations demonstrate the strength of the proposed method, the result is closer to the real-world scene in lightness, color, and details. Besides, experiments also demonstrate that the proposed method with the single low-light image can achieve the same effect as multi-exposure image fusion algorithm and no ghost is introduced.
본 연구의 목적은 경비안전시스템 이용자들의 서비스품질이 기업이미지와 고객만족도에 미치는 영향을 분석하는데 있다. 이를 실증분석을 통해 확인하고자 전국적으로 이용자 200여명을 대상으로 2019년 5월 2일부터 6월 12일까지 약 40일 동안 설문조사를 실시하였다. 설문내용은 "서비스품질, 기업이미지, 고객만족도"로 구성하였다. 실증분석은 타당성과 중요도, 신뢰도, 연관성 분석을 중심으로 실행하였다. 설문조사를 통하여 탐색적요인 및 구조방정식 등을 추출하고자 SPSS WIN 18.0을 사용하였다. 연구 결과 경비안전시스템 이용자들은 서비스품질이 좋을수록 기업이미지가 좋아지고, 기업이미지가 좋을수록 고객만족도가 높아지는 것으로 나타났다. 또한 서비스품질이 좋을수록 고객만족도가 높아질 것으로 제시하였다. 따라서 각 경비안전시스템 업체들은 고객만족도 향상을 위해 서비스품질을 꾸준히 향상시켜 나가야 할 것이다.
본 연구의 목적은 대학교육 환경에 변화속에서 교육 서비스품질이 학생만족, 대학이미지, 몰입 그리고 충성도에 미치는 영향을 파악하여 양질에 대학교육을 위한 전략적 방안을 제시하고자 함을 목적으로 한다. 이를 위해 수도권 소재 대학 4학년에 재학중인 학생 229명을 표본으로 6개의 가설을 설정하고 실증분석을 하였다. 연구의 결과는 교육 서비스품질이 만족과 대학 이미지에 긍정적인 영향을 미치고, 만족은 몰입과 충성도에 영향을 미치는 것으로 나타나고 있다. 그러나 이미지는 몰입에는 영향을 미치지 않는 것으로 검증되었다. 몰입은 충성도에 영향을 미치는 것으로 나타났다. 가설검증 결과를 통해서 교육 서비스품질 향상을 위한 대학에 노력이 대학이미지와 충성도에 영향을 주고 장기적인 대학의 경쟁력 향상을 가져 온다고 할 수 있다. 교육 서비스품질 관리를 위한 궁극적인 노력이 급변하는 대학환경에서 생존하는 방법을 제시해 줄 것이다.
In this paper, we proposed an watermarking algorithm in which invariable sign of DWT coefficients should be used and by which the quality of digital image can be preserved for the protection of copyright. According to the algorithm, through the calculation of the sign DWT coefficients and the use of elements, position of watermark and size value should be decided. By so doing, the algorithm can improve image quality(PSNR) and obtain good efficiency with which strong watermark can be inserted into the digital image.
TMN5 used to test the performance of H.263 is a DCT-based H.263 which DCT is used as transform coding, but DWT is used instead of DCT and adaptive quantizer of being appropriate to DWT is designed in this paper while the structure of TMN5 is maintained. DWT-based H.263, which is proposed in this paper, is excellent in transplantation of the existing system and can improve frame rate by transmitting more Frame. Also, the average PSNR, objective quality of image, has been lost at degree of average 0.35㏈ in luminance signals, but has been improved over a average of 2㏈ in chrominance signals. Subjective quality of image has been improved as blocking effect, which has seriously occurred in DCT based H.263, is diminished. DWT-based H.263 can. therefore. advance video quality of image comparing with the existing ways.
Positron emission tomography (PET) is widely used imaging modality for effective and accurate functional testing and medical diagnosis using radioactive isotopes. However, PET has difficulties in acquiring images with high image quality due to constraints such as the amount of radioactive isotopes injected into the patient, the detection time, the characteristics of the detector, and the patient's motion. In order to overcome this problem, we have succeeded to improve the image quality by using the dynamic image reconstruction method based on singular value decomposition. However, there is still some question about the characteristics of the proposed technique. In this study, the characteristics of reconstruction method based on singular value decomposition was estimated over computational simulation. As a result, we confirmed that the singular value decomposition based reconstruction technique distinguishes the images well when the signal - to - noise ratio of the input image is more than 20 decibels and the feature vector angle is more than 60 degrees. In addition, the proposed methode to estimate the characteristics of reconstruction technique can be applied to other spatio-temporal feature based dynamic image reconstruction techniques. The deduced conclusion of this study can be useful guideline to apply medical image into SVD based dynamic image reconstruction technique to improve the accuracy of medical diagnosis.
International Journal of Internet, Broadcasting and Communication
/
제13권2호
/
pp.7-13
/
2021
Machine vision is a technology that helps the computer as if a person recognizes and determines things. In recent years, as advanced technologies such as optical systems, artificial intelligence and big data advanced in conventional machine vision system became more accurate quality inspection and it increases the manufacturing efficiency. In machine vision systems using deep learning, the image quality of the input image is very important. However, most images obtained in the industrial field for quality inspection typically contain noise. This noise is a major factor in the performance of the machine vision system. Therefore, in order to improve the performance of the machine vision system, it is necessary to eliminate the noise of the image. There are lots of research being done to remove noise from the image. In this paper, we propose an autoencoder based machine vision system to eliminate noise in the image. Through experiment proposed model showed better performance compared to the basic autoencoder model in denoising and image reconstruction capability for MNIST and fashion MNIST data sets.
본 논문에서는 화질 저하 모델에 기반한 다중 인식기 결합을 이용하여 저화질 영상에 대한 인식 성능을 개선하기 위한 방법을 제안한다. 제안하는 방법은 화질 저하 모델을 이용해 특정 화질에 각각 특화된 복수의 인식기들을 생성한다. 인식 과정에서는 인식기들의 결과를 가중 평균에 의해 결합함으로써 최종 결과를 결정한다. 이 때, 각 인식기의 가중치는 입력 영상의 화질 추정 결과에 따라 동적으로 결정된다. 입력 영상의 화질에 특화된 인식기에는 큰 가중치를, 그렇지 않은 인식기에는 작은 가중치를 지정한다. 그 결과, 입력 영상의 화질 변이에 효과적으로 적응할 수 있다. 뿐만 아니라, 복수의 인식기를 사용하기 때문에 저화질 영상에 대하여 단일 인식 시스템보다 더욱 안정적인 성능을 나타낸다. 제안하는 다중 인식기 결합 방법은 화질을 고려하지 않은 다중 인식기 결합 방법이나, 화질을 고려한 단일 인식 방법과 비교하여 더 높은 인식률을 보였다.
This paper proposes a hybrid image coding in order to improve the coding performance by combining the BTC with the DPCM. And utilizing the human perceptual characteristics, a new objective image quality evaluation method has been proposed to obtain an excellent result in good agreement with the subjective quality evaluation. A hyb-1 method consisting of the DPCM and the AMBTC has retained a good picture quality at the bit rate of 1.5 bits/pel. A hyb-3 method combining the EBTC-3 with the DPCM has scarcely degraded the picture quality compared with the original image at the bit rate of 2.1 bits/pel. A newly proposed mehtod of picture quality evaluation accumulating a blocky noise at the edge block and an impulsive noise at the flat block selectively has been coincident with the subjective evaluation of quality.
In the Dedicated Short Range Communication (DSRC) system channel, a large number of bit errors occur because of Additive White Gaussian Noise (AWGN) and fading. When an image data is transmitted under the condition, reconstructed image quality is significantly degraded. In this paper, as an alternative to the error correcting code and/or automatic repeat request scheme, we propose an error recovery scheme for image data transmission. We first analyze how transmission errors in the DSRC system channel degrade image quality. Then, in order to improve image quality, we propose error resilient and concealment schemes for still image transmission using DCT-based fixed length coding, hamming code, cyclic redundancy check, and interleaver. Finally, we show its performance by an experiment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.