• Title/Summary/Keyword: Imprint Process

Search Result 118, Processing Time 0.025 seconds

Fabrication of Hot Embossing Plastic Stamps for Microstructures (마이크로 구조물 형성을 위한 핫 엠보싱용 플라스틱 스탬프 제작)

  • Cha Nam-Goo;Park Chang-Hwa;Lim Hyun-Woo;Park Jin-Goo;Jeong Jun-Ho;Lee Eung-Sug
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.589-593
    • /
    • 2005
  • Nanoimprinting lithography (NIL) is known as a suitable technique for fabricating nano and micro structures of high definition. Hot embossing is one of NIL techniques and can imprint on thin films and bulk polymers. Key issues of hot embossing are time and expense needed to produce a stamp withstanding a high temperature and pressure. Fabrication of a metal stamp such as an electroplated nickel is cost intensive and time consuming. A ceramic stamp made by silicon is easy to break when the pressure is applied. In this paper, a plastic stamp using a high temperature epoxy was fabricated and tested. The plastic stamp was relatively inexpensive, rapid to produce and durable enough to withstanding multiple hot embossing cycles. The merits of low viscosity epoxy solutions were a fast degassing and a rapid filling the microstructures. The hot embossing process with plastic stamp was performed on PMMA substrates. The hot embossing was conducted at 12.6 bar, $120^{\circ}C$ and 10 minutes. An imprinted PMMA wafer was almost same value of the plastic stamp after 10 times embossing. Entire fabrication process from silicon master to plastic stamp was completed within 12 hours.

The effect of wafer deformation on UV-nanoimprint lithography using an EPS(elementwise patterned stamp) (EPS(elementwise patterned stamp)활용 UV나노임프린트 공정에서의 웨이퍼 미소변형의 영향)

  • Sim Young-suk;Jeong Jun-ho;Sohn Hyonkee;Lee Eung-sug;Fang Lingmei;Lee Sang-chan
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.1
    • /
    • pp.35-39
    • /
    • 2005
  • In the UV-NIL process using an elementwise patterned stamp (EPS), which includes channels formed to separate each element with patterns, low-viscosity resin droplets with a nano-liter volume are dispensed on all elements of the EPS. Following pressing of the EPS, the EPS is illuminated with UV-light to cure the resin; and then the EPS is separated from several thin patterned elements on a wafer. Experiments on UV-NIL were performed on an EVG620-NIL. 50 - 100nm features of the EPS with 3m channels were successfully transferred to 4 in. wafers. Especially, the wafer deformation during imprint was analyzed using the finite element method (FEM) in order to study the effect of the wafer deformation on the UV-NIL using EPS.

A Study on Optical Characteristic of Nano Metal Grid Polarizer Film with Different Deposition Thicknes (나노 금속 격자형 편광필름 제작에서 증착 두께에 따른 광 특성 연구)

  • Kim, Jiwon;Cho, Sanguk;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.63-67
    • /
    • 2015
  • In this study, we demonstrate the change of optical characteristic by thickness of metal deposition on nano metal grid polarizer film fabrication. Nano metal grid polarizer film consists of aluminium grid polarizer layer on PET (Polyethylene phthalate) substrate. We aim at metal grid layer formation for the large nano wire grid polarizer fabrication. we draw process conditions of the nano metal grid polarizer film fabrication to improve transmittance and extinction ratio and Nano wire grid polarizer film (NWGP) film is fabricated with 140 nm pitch, 70 nm width, and 70 nm depth of metal grid on optimum design conditions. As a result, we get high optical properties of nano wire grid polarizer which is the maximum transmittance of 80% and the extinction ratio of $10^6$ at 600 nm wavelength respectively.

Adhesion Force Measurements of Nano-Imprint Materials Using Atomic Force Microscope (원자력현미경을 이용한 나노임프린트 재료의 접착력 측정)

  • Yun, Hyeong Seuk;Lee, Mongryong;Song, Kigook
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.358-363
    • /
    • 2014
  • Adhesion forces between acrylate imprinting resin and a surface treated atomic force microscope (AFM) tip were investigated. Compared to the untreated silicon tip, 38% of the adhesion force is reduced for the hydrophobic tip treated with $CH_4$ plasma whereas 1.6 time increases is found for the hydrophilic tip with $O_2$ plasma treatment. Such a measurement of the adhesion force using AFM provides very quantitative results on adhesion comparing to the crosscut adhesion test which gives qualitative results. Since the adhesion area becomes larger as the imprinting pattern size gets smaller, the surface treatment issue becomes more important in the nano-imprinting process.

Epigenetic Responses Programmed by Prenatal Stress : $F_1$ Male Rat Model (출생 전 스트레스에 의해 프로그램된 후생학적 반응 : $F_1$ 수컷 흰쥐 모델)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.12 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • The efficient strategies to cope with unpredictable and/or harmful environmental changes have been developed by every organism in order to ensure its survival and continuity of it's own species. As a results, all living things on earth maintain dynamically internal stability via a process termed 'homeostasis' among physiological parameters despite of external environment changes. Stress is an emotional and physical response to threat homeostasis. Stress may have not only transient but rather permanent effect on the organism; recent evidence clearly show that prenatal stress could organize or imprint permanently physiological systems without any change in genetic codes, a process known as 'epigenetic programming'. In this review, a series of reproduction-associated events occurred in prenatally stressed male rats such as alteration in the structure of sexually dimorphic brain regions, modification of neurotransmitter metabolism, changes in reproductive endocrine status, and finally, disorders of sexual behavior will be introduced. The fetal brain is highly sensitive to prenatal programming and glucocorticoids in particular have powerful brain-programming properties. The chronic hyperactivation of fetal brain by maternal stress-induced glucocorticoid input will provide new program via increasing the neuroplasticities. This 'increased neuroplasticities' will be the basis for the 'increased phenotypic plasticities' rendering the organism's better adaptation to environmental challenges. In conclusion, organism who experienced 'harsh' environment in his fetal life seems to give up a certain portion of reproductive competence to make good chance of survival in his future life by epigenetic (re)programming.

  • PDF

Fabrication of UV imprint stamp using diamond-like carbon coating technology (Diamond-like carbon 코팅기술을 사용한 UV-임프린트 스탬프 제작)

  • JEONG JUN-HO;KIM KI-DON;SIM YOUNG-SUK;CHOI DAE-GEUN;CHOI JUNHYUK;LEE EUNG-SUG;LIM TAE-WOO;PARK SANG-HU;YANG DONG-YOL;CHA NAM-GOO;PARK JIN-GOO
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.167-170
    • /
    • 2005
  • The two-dimensional (2D) and three-dimensional (3D) diamond-like carbon (DLC) stamps for ultraviolet nanoimprint lithography (UV-NIL) were fabricated using two kinds of methods, which were a DLC coating process followed by the focused ion beam (FIB) lithography and the two-photon polymerization (TPP) patterning followed by nano-scale thick DLC coating. We fabricated 70 nm deep lines with a width of 100 nm and 70 nm deep lines with a width of 150 nm on 100 nm thick DLC layers coated on quartz substrates using the FIB lithography. 200 nm wide lines, 3D rings with a diameter of $1.35\;{\mu}m$ and a height of $1.97\;{\mu}m$, and a 3D cone with a bottom diameter of $2.88\;{\mu}m$ and a height of $1.97\;{\mu}m$ were successfully fabricated using the TPP patterning and DLC coating process. The wafers were successfully printed on an UV-NIL using the DLC stamp. We could see the excellent correlation between the dimensions of features of stamp and the corresponding imprinted features.

  • PDF

Understanding on the Fossilization of Middle School Students (화석 형성 과정에 대한 중학생들의 이해)

  • Hwang, Koo-Geun;Cho, Kyu-Seong;Huh, Min
    • Journal of the Korean earth science society
    • /
    • v.30 no.3
    • /
    • pp.305-316
    • /
    • 2009
  • Experiments to explain fossilization have been introduced in elementary and middle school science textbooks. Most of them have explained the processes by the mold and cast formed by imprint of bivalve or leaf. The processes explained in the textbooks are more similar to that of trace fossil than body fossil, because the external molds from experiment are imprints after the model was taken off. However fossils of the figures in the textbooks are mostly body fossils. Therefore, the students may be willing to equate the experiment process with the fossilization of the body fossils. The misconceptions were confirmed in this study by the questionnaire which asked 9th grade students on this subject. Many students thought that the body fossils were fossilized imprints and the fossils of terrestrial organism were formed on land without transportation, that is, they did not understand well about biostratinomy and crustal movement. The misconception about the environment in which fossils formed was already reported in a survey on the elementary school students, but has not revised until ninth grade. Therefore, to remove the misconception related to the fossilization, the fossil models in the experiments may be replaced by trace fossils, or new experiments for body fossil should be designed.

A Study on Adhesion of Mechanical Properties of Rubber by MgCl2 (투명 차폐 필름 구현을 위한 전도성 복합 바인더의 입자구조에 따른 성능 평가)

  • Park, Ji-won;Back, Jong-Ho;Lee, Tae-Hyung;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.18 no.2
    • /
    • pp.59-67
    • /
    • 2017
  • Recently, integration of parts is accelerating according to the growth of the smart mobile industry. The integration of these parts causes problems of interference phenomena between the parts, and the importance of electromagnetic wave shielding technology to solve this problem is highlighted. Electromagnetic wave shielding technology is implemented so as to reflect or absorb electromagnetic waves, and generally conductive materials are utilized for electromagnetic wave shielding. Transparent shielding technology is required according to recent industrial changes. In this research, we propose transparent the shielding film using imprint technology with conductive composite binder. Utilizing UV polymerized acrylic binder to produce a conductive composite binder. Spherical, plate and stacked silver particles were used for conductivity. The changes of the curing characteristics, conductivity and adhesion were observed according to the structural characteristics of the silver particles. The use of spherical particles was the most efficient in the curing process, and an additional curing system was required to complement the UV-shadowing structure. In the conductivity evaluation, the stacked structure showed excellent characteristics. The adhesion of spherical system was the best. It is evaluated as a result of irregularities on the surface. Ultimately, the patterned film using this showed excellent transparency characteristics.