• Title/Summary/Keyword: Impressed current cathodic protection

Search Result 44, Processing Time 0.028 seconds

The Field Test of a Mitigation Method from DC Subwaysystem for Underground Pipeline

  • Bae, Jeong-Hyo;Ha, Tae-Hyun;Ha, Yoon-Cheol;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.308-310
    • /
    • 2007
  • The owner of underground metallic structures (gas pipeline, oil pipeline, water pipeline, etc) has a burden of responsibility for the corrosion protection in order to prevent big accidents like gas explosion, soil pollution, leakage and so on. So far, Cathodic Protection(CP) technology have been implemented for protection of underground systems. The stray current from DC subway system in Korea has affected the cathodic protection (CP) design of the buried pipelines adjacent to the railroads. In this aspect, KERI has developed a various mitigation method, drainage system through steel bar under the rail, a stray current gathering mesh system, insulation method between yard and main line, distributed ICCP(Impressed Current Cathodic System), High speed response rectifier, restrictive drainage system, Boding ICCP system. We installed the mitigation system at the real field and test of its efficiency in Busan and Seoul, Korea. In this paper, the results of field test, especially, distributed ICCP are described.

A Study on Analysis Method of Underwater Electric Field Signature due to Ship's Corrosion and Corrosion Protection System (선체 부식 및 부식 방지장치에 의한 수중 전기장 신호 해석 방안 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jeon, Jae-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.43-52
    • /
    • 2008
  • The galvanic corrosion of a vessel, or systems fitted to minimize the ship's corrosion such as ICCP (Impressed Current Cathodic Protection) system and sacrificial anodes, can lead to significant electrical current flow in the sea. The presence of vessel's current sources associated with corrosion will give rise to detectable electric field surrounding the vessel and can put it at risk from mine threats. For this reason, it is necessary to design corrosion protection systems so that they don't only prevent a hull corrosion but also minimize the electric field signature. In this paper, we describe theoretical backgrounds of underwater electric field signature due to corrosion and corrosion protection system on naval vessels and analysis results of the electric field according to the ship's hull and it's propeller coating damage and ICCP anode displacement.

A Study on Underwater Electro-magnetic Signature Prediction Due to Hull Corrosion of a Naval Ship (함정의 선체 부식에 의한 수중 전자기 신호 예측에 관한 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Ju, Hae-Sun;Jeon, Jae-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.177-185
    • /
    • 2012
  • Corrosion currents flow through the seawater due to the different electrochemical potential between a hull and a propeller under the draft line of ship. Additionally, in order to protect the hull and other sensitive anodic parts of the ship from corrosion, the corrosion protection system, called impressed current cathodic protection(ICCP) equipment has been installed in most naval ships. Those currents could be harmful to the electromagnetic silencing of the naval ship because sea mines are triggered by even a feeble field value. In this paper, we described electric and corrosion related magnetic fields by ship's galvanic corrosion and a corrosion protection system, and prediction results of electric and corrosion related magnetic fields at any depth for the model ship.

Characteristics and Measurement Method of the Underwater Electromagnetic Signature Emitted from a Naval Ship (함정 발생 수중 전자기장 신호의 특성 및 측정 기법)

  • Yang, Chang-Seob;Chung, Hyun-Ju;Shin, Seung-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.11-19
    • /
    • 2006
  • The underwater electromagnetic signatures of a naval ship are mainly generated from three sources which are the permanent and induced magnetic field in the ship's hull and other ferrous components, the cathodic current electromagnetic field established by the Impressed Current Cathodic Protection(ICCP) system or the Sacrificial Anode and the stray electromagnetic fields generated by onboard equipment. These signatures can be minimized by certain design methods or installation of signature reduction equipment. In this paper, we represented the characteristic of the underwater electromagnetic signature and the signature reduction techniques for a naval ship. Also, we measured the electromagnetic field changes emitted from the real ship using the Electric and Magnetic field Measurement System(EMMS). We found that the underwater electromagnetic signature for a naval ship can be used as input or trigger signal in a surveillance system and an influence mine.

The Application of Impressed Current System for the Corrosion Control of Reinforcing Steel in Concrete (콘크리트 중의 철근부식 방지를 위한 외부전원법의 적용)

  • 문한영;김성수;김홍삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.197-202
    • /
    • 1997
  • Recently the interest in the reinforcing steel corrosion due to the use of sea-sand and deicing salt, marine environment, and carbonation in RC structures is increasing, therefore the studies on the corrosion control of reinforcing steel in concrete are vigorously proceeding. In this study, from the viewpoint of electrochemical process of steel corrosion in concrete we applied the impressed current system among the cathodic protections to reinforcing steel in concrete and ascertained the protection effect by half-cell potential, corrosion rate, and depolarization.

  • PDF

A Mitigation Methode of DC Stray Current for Underground Metallic Structures in KOREA (국가 기간 시설물의 전식 대책(안))

  • Bae, Jeong-Hyo;Ha, Yoon-Cheol;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1609-1611
    • /
    • 2007
  • The owner of underground metallic structures (gas pipeline, oil pipeline, water pipeline, etc) has a burden of responsibility for the corrosion protection in order to prevent big accidents like gas explosion, soil pollution, leakage and so on. So far, Cathodic Protection(CP) technology have been implemented for protection of underground systems. The stray current from DC subway system in Korea has affected the cathodic protection (CP) system of the buried pipelines adjacent to the railroads. In this aspect, KERI has developed a various mitigation method, drainage system through steel bar under the rail, a stray current gathering mesh system, insulation method between yard and main line, distributed ICCP(Impressed Current Cathodic System), High speed response rectifier, restrictive drainage system, Boding ICCP system. In this paper, the mechanism of mitigation method of DC stray current for underground metallic structures is described.

  • PDF

A Case Study(1) of Mitigation Methode of DC Stray Current for Underground Metallic Structures in KOREA (국가기간시설물의 전식대책(안) 및 그 적용 사례(1))

  • Bae, Jeong-Hyo;Ha, Yoon-Cheol;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1612-1614
    • /
    • 2007
  • The owner of underground metallic structures (gas pipeline, oil pipeline, water pipeline, etc) has a burden of responsibility for the corrosion protection in order to prevent big accidents like gas explosion, soil pollution, leakage and so on. So far, Cathodic Protection(CP) technology have been implemented for protection of underground systems. The stray current from DC subway system in Korea has affected the cathodic protection (CP) design of the buried pipelines adjacent to the railroads. In this aspect, KERI has developed a various mitigation method, drainage system through steel bar under the rail, a stray current gathering mesh system, insulation method between yard and main line, distributed ICCP(Impressed Current Cathodic System), High speed response rectifier, restrictive drainage system. We installed the mitigation system at the real field and test of its efficiency in Busan and Seoul, Korea. In this paper, the results of field test, especially, distributed ICCP system is described.

  • PDF

Anti-Corrosion Property of Geopolymer Evaluated by an Impressed Current Cathodic Protection Method, Exposed to Marine Environment (염해환경에서 외부전원법에 의한 지오폴리머 시험체 보강철근의 방식특성 평가)

  • Lee, Hae-Seung;Cho, Ggu-Hwan;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.5
    • /
    • pp.397-405
    • /
    • 2014
  • There are many literatures reporting that the service life of re-bars in concrete structures is reduced in the oceanic environment due to chloride attack. To solve this problem, this study used geo-polymer as a mix material for concrete to increase its resistance to salt damage, and the external voltage method, one of the electric methods, is was applied to evaluate the likelihood of re-bars in the oceanic structure being exposed to the extreme salt environment. The items evaluated include the natural potential of re-bars and the corrosion rate. The results of the tests showed that in all of the salt environmental conditions (submerged zone, tidal zone, and crack), the tested materials were remarkably effective compared with ordinary concrete. The corrosion protective property was found not only in the evaluation of the natural potential but also in the evaluation of the corrosion rate, suggesting that the external voltage method can be used stably for geo-polymer RC structures in an extreme salt environment.

Cathodic Protection of Buried Gas Pipelines Using Common Anode Beds (공용양극을 이용한 가스배관의 전기방식)

  • Ha, Y.C.;Kim, D.K.;Bae, J.H.;Ha, T.H.;Lee, H.G.
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • Due to industrialization and urbanization, underground metallic utilities with different owners have been rapidly increased and cathodic protection (CP) methods, especially impressed current CP systems, have been widely adopted to protect their utilities from corrosion with expanded recognition of this method. The stray current interference problem as well as the difficulty in spatial security for system installation, however, came to a ramification of which each owner couldn't resolve for himself. In this respect, this paper illustrates a field-diagnosed example for mutual interference due to separately operated CP systems and suggests an alternative method to overcome the interference situation by design and field-assessment of a common anode bed cathodic protection system.

  • PDF

Mitigation of Stray Current Interference from DC Electric Railroad(2) DICCP System (직류전기철도의 누설전류 간섭대책(2) 분포외부전원시스템)

  • Ha, Yoon-Cheol;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.273-275
    • /
    • 2005
  • The national need to establish a new stray current mitigation method to protect the underground metallic infrastructures in congested downtown area forced us to design and develop the distributed impressed current cathodic protection (DICCP) system. The main purpose of this system is to replace the stray current drainage bond methods, which is widely adopted by pipeline owners in Korea. Currently, forced drainage makes up about 85% of total drainage facilities installed in Korea because polarized drainage can neither drain perfectly the stray currents during normal operation of electric vehicle nor drain the reverse current during regenerative braking at all. The forced drainage, however, has been abused as an alternative cathodic protection system, which impresses currents from rails to the pipelines and accordingly uses the rails as anodes. As a result, it is necessary to consider a new method to both cathodically protect the pipelines and effectively drain the stray currents. In this paper, we describe the design parameters and installation schemes of DICCP system that can meet these demands.

  • PDF