• Title/Summary/Keyword: Implicit euler

Search Result 74, Processing Time 0.029 seconds

Numerical Analysis of 3-Dimensional Unsteady Flow Around the High Speed Train (고속으로 주행하는 열차 주위의 3차원 비정상 유동장 해석)

  • Ha, Seong-Do
    • 연구논문집
    • /
    • s.27
    • /
    • pp.15-34
    • /
    • 1997
  • The 3-dimensional unsteady compressible flows around the high speed train have been simulated for the train entering a tunnel and for passing another train. The simulation method employs the implicit approximation-factorization finite difference algorithm for the inviscid Euler equations in general curvilinear coordinates. A moving grid scheme is applied in order to resolve the train movement relative to the tunnel and the other train. The velo-city and pressure fields and pressure drag are calculated to study the effects of tunnel and the other train. The side directional force which is time dependent is also computed for the passing train. Pressure distribution shows that the compression wave is generated in front of the train noise just after the tunnel entrance and proceeds along the inside of tunnel.

  • PDF

Application Study of Nonlinear Transformation Control Theory for Link Arm System (링크 암에 대한 비선형 변환 제어 이론의 응용 연구)

  • Baek, Y.S.;Yang, C.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.94-101
    • /
    • 1996
  • The equations of motion for a basic industrial robotic system which has a rigid or a flexible arm are derived by Lagrange's equation, respectively. Especially, for the deflection of the flexible arm, the assumed mode method is employed. These equations are highly nonlinear equations with nonlinear coupling between the variables of motion. In order to design the control law for the rigid-arm robot, Hunt-Su's nonlinear transformation method and Marino's feedback equivalence condition are used with linear quadratic regulator(LQR) theory. The control law for the rigid-arm robot is employed to input the desired path and to provide the required nonlinear transformations for the flexible-arm robot to follow. By using the implicit Euler method to solve the nonlinear equations, the comparison of the motions between the flexible and the rigid robots and the effect of flexibility are examined.

  • PDF

Efficient Calculation of Gas-kinetic BGK scheme for Analysis of Inviscid and Viscous Flows (점성 및 비점성 유동장 해석을 위한 BGK 수치기법의 효율적 계산)

  • Chae, Dong-Suk;Kim, Chong-Am;Rho, Oh-Hyun
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.65-72
    • /
    • 1998
  • From the Boltzmann equation with BGK approximation, a gas-kinetic BGK scheme is developed and methods for its efficient calculation, using the convergence acceleration techniques, are presented in a framework of an implicit time integration. The characteristics of the original gas-kinetic BGK scheme are improved in order for the accurate calculation of viscous and heat convection problems by considering Osher's linear subpath solutions and Prandtl number correction. Present scheme applied to various numerical tests reveals a high level of accuracy and robustness and shows advantages over flux vector splittings and Riemann solver approaches from Euler equations.

  • PDF

비점성 압축성 코드의 병렬화 기법에 의한 슈퍼컴퓨터 CRAY T3E의 성능 분석

  • Go Deok-Gon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.17-22
    • /
    • 1997
  • The performances of the CRAYT3E and CRAYC90 were compared in the point of aerodynamics. The CRAYC90 with and without the highest vector option was run, respectively. The CRAYT3E was run with various processors (from 1pe to 32pes). The communication utilities of MPI and SHMEM were used to inform the boundary data to the other processors. The DADI Euler solver, which is implicit scheme and use central difference method, was used. The domain decomposition method was also used. As the result, the CRAYC90 with the highest vector option is 5.7 times faster than the CRAYT3E with 1 processor. However, because of the scalability of the CRAYT3E, the CRAYT3E with more than 6 processors is faster than CRAYC90. In case that 32 processors used, the CRAYT3E is 6 times faster than CRAYC90 with the highest vector option.

  • PDF

탄화수소/산소 혼합기체가 채워진 관 내부를 전파하는 데토네이션 파의 해석과 가시화

  • Choe Jeong Yeol
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.29-36
    • /
    • 2004
  • A numerical study is carried out on the detonation wave propagation through a T-shaped flame tube, which represents a crucial part of the combustion wave ignition (CWI) system aimed for simultaneous ignition of multiple combustion chambers by delivering detonation waves. The formulation includes the Euler equations and an induction-parameter model. The reaction rate is treated based on a chemical kinetics database obtained from a detailed chemistry mechanism. A second-order implicit time integration and a third-order TVD algorithm are Implemented to solve the theoretical model numerically. A total of more than two-million grid points are used to provide direct insight into the dynamics of the detonation wave. Several important phenomena including detonation wave propagation, degeneration, and re-initiation are carefully examined. Information obtained can be effectively used to facilitate the design and optimization of the flame tubes of CWI systems.

  • PDF

Navier-Stokes Analysis of Pitching Delta Wings in a Wind Tunnel

  • Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.28-38
    • /
    • 2001
  • A numerical method for the assessment and correction of tunnel wall interference effects on forced-oscillation testing is presented. The method is based on the wall pressure signature method using computed wall pressure distributions. The wall pressure field is computed using unsteady three-dimensional full Navier-Stokes solver for a 70-degree pitching delta wing in a wind tunnel. Approximately-factorized alternate direction implicit (AF-ADI) scheme is advanced in time by solving block tri-diagonal matrices. The algebraic Baldwin-Lomax turbulence, model is included to simulate the turbulent flow effect. Also, dual time sub-iteration with, local, time stepping is implemented to improve the convergence. The computed wall pressure field is then imposed as boundary conditions for Euler re-simulation to obtain the interference flow field. The static computation shows good agreement with experiments. The dynamic computation demonstrates reasonable physical phenomena with a good convergence history. The effects of the tunnel wall in upwash and blockage are analyzed using the computed interference flow field for several reduced frequencies and amplitudes. The corrected results by pressure signature method agree well with the results of free air conditions.

  • PDF

Internal Wave Computations based on a Discontinuity in Dynamic Pressure (동압 계수의 불연속성을 이용한 내면파의 수치해석)

  • 신상묵;김동훈
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.17-29
    • /
    • 2004
  • Internal waves are computed using a ghost fluid method on an unstructured grid. Discontinuities in density and dynamic pressure are captured in one cell without smearing or oscillations along a multimaterial interface. A time-accurate incompressible Navier-Stokes/Euler solver is developed based on a three-point backward difference formula for the physical time marching. Artificial compressibility is introduced with respect to pseudotime and an implicit method is used for the pseudotime iteration. To track evolution of an interface, a level set function is coupled with the governing equations. Roe's flux difference splitting method is used to calculate numerical fluxes of the coupled equations. To get higher order accuracy, dependent variables are reconstructed based on gradients which are calculated using Gauss theorem. For each edge crossing an interface, dynamic pressure is assigned for a ghost node to enforce the continuity of total pressure along the interface. Solitary internal waves are computed and the results are compared with other computational and experimental results.

A New Numerical Method for Solving Differential Equation by Quadratic Approximation (포물선 근사법에 의한 상태방정식의 새로운 수치해석적 접근법에 관한 연구)

  • Lee, Jong-Gi;Kwon, Yong-Jun;Choi, Byoung-Kon;Moon, Young-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.107-109
    • /
    • 2003
  • 전력계통의 과도 안정도 해석의 접근방법에는 SI(Simultaneous Implicit)법과 PE(Partitioned Explicit)법 두 가지방법을 사용해오고 있다. SI법에는 Trapezoidal법 등이 있고, PE법에는 Runge-Kutta법, Euler법등이 사용되고 있다. SI법인 Trapezoidal법은 PE법의 Runge-Kutta법 또는 Euler법에 비해 시간간격을 크게 해서 계산속도를 줄일 수 있다는 장점이 있지만, 정화도면에서는 신뢰한 수 없는 단점이 있다. 이 논문에서는 포물선 사법을 이용하여 Trapezoidal법의 정확도를 개선학 수 있는 방법을 제시하고 명확한 수학적 증명을 통해 타당성을 보여준다. 연속함수와 불연속함수에 대해서 Runge-Kutta법과 Trapezoidal법과 제안한 방법을 적용시켜서 제안한 방법의 정화함을 보여준다.

  • PDF

A Study on Delay and Modification in Predicting Turbulence Flow in PISG Algorithm (PISO 알고리즘에서 난류예측의 후생성과 보완에 대한 연구)

  • Lee J. W.;Ryou H. S.;Kang K. G.
    • Journal of computational fluids engineering
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • In this paper, a modification of PISO algorithm based on standard k-ε turbulence model was proposed. The numerical technique used in this research is finite volume method, hybrid scheme for discretizing convection term, Euler implicit scheme for discretizing time term, and non-staggered grid. The basic idea of the modification of PISO algorithm is to perform an additional corrector stage for turbulence kinetic energy and dissipation rate to correct the inconsistence of flow and turbulence. In order to validate this algorithm, simulation of flow around a square cylinder (Re=3000) was performed in two-dimensional case. The results obtained from the proposed scheme show better agreement with those from the experiment than using original PISO algorithm in coherent velocity field.

Proper Numerical Scheme to Solve the Flow Past a Circular Cylinder with Time and Grid Size Variations (시간과 격자 크기 변화에 따른 원주후류해석의 경제적 수치기법)

  • Maeng, Joo-Sung;Kim, Yong-Dae;Choi, IL-Kon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.652-659
    • /
    • 2000
  • The purpose of this study is to present the most effective numerical scheme to calculate the unsteady flows. In order to calculate the flow quantities of flow past a circular cylinder, Three-time level and five convective schemes are applied to unsteady and convective terms, respectively. The values obtained are compared with those from the existing experimental and numerical studies. At Reynolds numbers up to 160, time intervals can be expanded 10 times of Implicit Euler scheme using Three-time level method, and it is found that QUICK and CUI schemes work much stable than others even if less grid density conditions. The combination of Three-time level and QUICK scheme gives high resolutions for laminar unsteady problems with PC level.