• Title/Summary/Keyword: Implementation Phase

Search Result 1,240, Processing Time 0.027 seconds

The Impact of the Development Process of an Integrated Science Program on Pre-service Teachers Learning Motivation and Group Intelligence: A Focus on Values and Integration with Software (통합과학 프로그램 개발과정이 예비교사의 학습동기 및 집단지성에 미치는 영향: 가치관과 소프트웨어 접목을 중심으로)

  • Dukyoung JI
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.3
    • /
    • pp.374-384
    • /
    • 2023
  • This study investigated the impact on pre-service teachers during the development of an integrated science education program, emphasizing group intelligence, values, and software application in response to societal demands. The results revealed several key findings. Firstly, the development of an integrated science education program utilizing group intelligence enhanced the learning motivation of pre-service teachers, particularly demonstrating improvements during the implementation phase. Secondly, the group intelligence-based development of the integrated science education program cultivated the group intelligence competence of pre-service teachers, manifesting positive effects throughout the entire process of program development, demonstration, and feedback. Thirdly, it was evident that the integration of software and individual values into science curriculum requires specialized support.

Implementation algorithm and system for generating PWM frequency for berthing the train at station (열차의 정위치 정차용 주파수의 PWM 생성 알고리즘과 시스템 구현)

  • Eun-Taek Han;Chang-Sik Park;Ik-Jae Kim;Dong-Kyoo Shin
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.37-50
    • /
    • 2023
  • In general, PLL or DDS are mainly used as precise and stable frequency synthesis methods. For stable operation, a PWM frequency generation algorithm was designed and implemented using FPGA. This is an algorithm that creates a frequency 8,192 times the target frequency and then performs the D flip-flop 13 times to generate multiple frequencies with a precision of 1 Hz. Using the designed algorithm, it is applied to the Berthing system for stopping trains in station. The applied product was developed and tested against the existing operating system to confirm its superior performance in terms of frequency generation accuracy.

On the Linkage of Object Properties for the Implementation of Virtual Validation of Railway Vehicle from Life Cycle Perspective (생명주기 관점에서 철도차량 가상확인 구현을 위한 개체 속성 연계에 관한 연구)

  • Min Joong Kim;Joo Uk Kim;U Ri Chae;Young Min Kim
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.1
    • /
    • pp.85-94
    • /
    • 2024
  • As systems become more complex today, verifying the safety of complex systems is becoming increasingly important. However, validation activities using actual systems face limitations in terms of time and cost. To overcome these limitations, the functions, characteristics, and operations of physical assets can be implemented in a virtual environment similar to the real world, allowing for validation through simulations under various scenarios. By performing validation in a virtual environment, iterative tests can be conducted through simulations in a realistic virtual environment without physical models during the conceptual design phase. Tests can also be performed under malfunction conditions or extreme conditions. In this study, we introduce a verification method for railway vehicles in a virtual environment and propose a method of applying virtual verification from a life cycle perspective.

Design and Implementation of a Career Planning Program at Chonnam National University Medical School (전남대학교 의과대학 졸업 후 진로지도 프로그램 설계와 운영)

  • Eui-Ryoung Han;Eun-Kyung Chung
    • Korean Medical Education Review
    • /
    • v.26 no.1
    • /
    • pp.36-40
    • /
    • 2024
  • Chonnam National University Medical School has designed and implemented two career planning programs: a three-phase curriculum-based program and a longitudinal non-curricular program over the course of 6 academic years. The three phases of the curriculum-based career planning program are self-assessment, career exploration, and field experience. The non-curricular career counseling program operates through a faculty advisor system, with each faculty member guiding a group of students from each academic year, and students in each year forming a mentor-mentee relationship. The non-curricular career exploration program consists of a student research support program, an international practice program in basic and clinical medicine, and a specialty exploration fair. A survey conducted among 38 graduates (54.3%) working as interns at Chonnam National University Hospital revealed that graduates preferred autonomous elective subjects within the curriculum-based program. They also responded positively to the faculty advisor system, through which they maintained close relationships. A focus group interview with three interns indicated that subjects providing direct experience in fields of interest and courses that students could choose freely were helpful in career decisions. Through follow-up research, it is necessary to design and operate a systematic career planning program based on an analysis of the needs of graduates taking part in a residency training program after selecting a medical specialty.

A novel aerodynamic vibration and fuzzy numerical analysis

  • Timothy Chen;Yahui Meng;Ruei-Yuan Wang;ZY Chen
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.161-170
    • /
    • 2024
  • In recent years, there have been an increasing number of experimental studies showing the need to include robustness criteria in the design process to develop complex active control designs for practical implementation. The paper investigates the crosswind aerodynamic parameters after the blocking phase of a two-dimensional square cross-section structure by measuring the response in wind tunnel tests under light wind flow conditions. To improve the accuracy of the results, the interpolation of the experimental curves in the time domain and the analytical responses were numerically optimized to finalize the results. Due to this combined effect, the three aerodynamic parameters decrease with increasing wind speed and asymptotically affect the upper branch constants. This means that the aerodynamic parameters along the density distribution are minimal. Taylor series are utilized to describe the fuzzy nonlinear plant and derive the stability analysis using polynomial function for analyzing the aerodynamic parameters and numerical simulations. Due to it will yield intricate terms to ensure stability criterion, therefore we aim to avoid kinds issues by proposing a polynomial homogeneous framework and utilizing Euler's functions for homogeneous systems. Finally, we solve the problem of stabilization under the consideration by SOS (sum of squares) and assign its fuzzy controller based on the feasibility of demonstration of a nonlinear system as an example.

Patient navigation in women's health care for maternal health and noncancerous gynecologic conditions: a scoping review

  • Jiwon Oh
    • Women's Health Nursing
    • /
    • v.30 no.1
    • /
    • pp.26-40
    • /
    • 2024
  • Purpose: This study investigated the scope of patient navigation studies on women's health care for maternal health and noncancerous gynecologic conditions and aimed to report the characteristics of the identified patient navigation programs. Methods: A scoping review was conducted following Arksey and O'Malley's framework. Five electronic databases were searched for relevant studies published in English: PubMed, Embase, Cochrane Library, CINAHL, and PsycInfo. There were no restrictions on the publication date and the search was completed in July 2023. Results: This scoping review included 14 studies, which collectively examined seven patient navigation programs. All selected studies were related to maternal health issues (e.g., perinatal health problems and contraception for birth spacing). Close to two-thirds of the patient navigation services were provided by women (n=9, 64.3%) and half by lay navigators (n=7, 50.0%). The majority incorporated the use of mobile health technologies (n=11, 78.6%). All of the patient navigation programs included in the review coordinated the necessary clinical and social support services to improve women's access to care. Conclusion: Patient navigation appears to be in its nascent phase in the field of maternal health. The results of this study suggest that the implementation of patient navigation services could potentially improve access to care for socially disadvantaged women and families. Furthermore, providing patient navigation services that are specifically tailored to meet women's needs could improve the quality of maternity care.

FPGA Implementation of RVDT Digital Signal Conditioner with Phase Auto-Correction based on DSP (RVDT용 DSP 기반 위상 자동보정 디지털 신호처리기 FPGA 구현)

  • Kim, Sung-mi;Seo, Yeon-ho;Jin, Yu-rin;Lee, Min-woong;Cho, Seong-ik;Lee, Jong-yeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1061-1068
    • /
    • 2017
  • A RVDT is a sensor that measures angular displacement and the output signal of RVDT is a DSBSC-AM signal. For this reason, a DSBSC-AM demodulation processor is required to determine the angular displacement from the output signal. In this paper, DADC(Digital Angle to DC) which extracts the angular displacement from the output signal of a RVDT is implemented based-on modified Costas Loop usually used in the demodulation of DSBSC-AM signal by using FPGA. DADC can used with both 4-wire and 5-wire RVDTs and can exactly compensate the phase difference between the input excitation and output signals of a RVDT unlike the conventional analog RVDT signal conditioners which require external components. Since digital signal processing technique that can enhance the linearity is exploited, DADC shows 0.035% linearity error, which is smaller than 0.005% that of a conventional analog signal conditioner. The DADC are tested in an integrated experimental environment which includes a commercial RVDT sensor, ADC and an analog output block.

In-situ Phase Transition Study of Minerals using Micro-focusing Rotating-anode X-ray and 2-Dimensional Area Detector (집속 회전형 X-선원과 이차원 검출기를 이용한 광물의 실시간 상전이 연구)

  • Seoung, Dong-Hoon;Lee, Yong-Moon;Lee, Yong-Jae
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.79-88
    • /
    • 2012
  • The increased brightness and focused X-ray beams now available from laboratory X-ray sources facilitates a variety of powder diffraction experiments not practical using conventional in-house sources. Furthermore, the increased availability of 2-dimensional area detectors, along with implementation of improved software and customized sample environmental cells, makes possible new classes of in-situ and time-resolved diffraction experiments. These include phase transitions under variable pressure- and temperature conditions and ion-exchange reactions. Examples of in-situ and time-resolved studies which are presented here include: (1) time-resolved data to evaluate the kinetics and mechanism of ion exchange in mineral natrolite; (2) in-situ dehydration and thermal expansion behaviors of ion-exchanged natrolite; and (3) observations of the phases forming under controlled hydrostatic pressure conditions in ion-exchanged natrolite. Both the quantity and quality of the in-situ diffraction data are such to allow evaluation of the reaction pathway and Rietveld analysis on selected dataset. These laboratory-based in-situ studies will increase the predictability of the follow-up experiments at more specialized beamlines at the synchrotron.

Design and Implementation of Digital Electrical Impedance Tomography System (디지털 임피던스 영상 시스템의 설계 및 구현)

  • 오동인;백상민;이재상;우응제
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.269-275
    • /
    • 2004
  • Different biological tissues have different values of electrical resistivity. In EIT (electrical impedance tomography), we try to provide cross-sectional images of a resistivity distribution inside an electrically conducting subject such as the human body mainly for functional imaging. However, it is well known that the image reconstruction problem in EIT is ill-posed and the quality of a reconstructed image highly depends on the measurement error. This requires us to develop a high-performance EIT system. In this paper, we describe the development of a 16-channel digital EIT system including a single constant current source, 16 voltmeters, main controller, and PC. The system was designed and implemented using the FPGA-based digital technology. The current source injects 50KHz sinusoidal current with the THD (total harmonic distortion) of 0.0029% and amplitude stability of 0.022%. The single current source and switching circuit reduce the measurement error associated with imperfect matching of multiple current sources at the expense of a reduced data acquisition time. The digital voltmeter measuring the induced boundary voltage consists of a differential amplifier, ADC, and FPGA (field programmable gate array). The digital phase-sensitive demodulation technique was implemented in the voltmeter to maximize the SNR (signal-to-noise ratio). Experimental results of 16-channel digital voltmeters showed the SNR of 90dB. We used the developed EIT system to reconstruct resistivity images of a saline phantom containing banana objects. Based on the results, we suggest future improvements for a 64-channel muff-frequency EIT system for three-dimensional dynamic imaging of bio-impedance distributions inside the human body.

Numerical Study on Operating Factors Affecting Performance of Surfactant-Enhanced Aquifer Remediation Process (계면활성제 증진 대수층 복원 프로세스에 영향을 미치는 운영 인자들에 대한 수치 연구)

  • Lee, Kun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.690-698
    • /
    • 2010
  • Contamination of groundwater resources by organic chemicals has become an issue of increasing environmental concern. Surfactant-enhanced aquifer remediation (SEAR) is widely recognized as one of the most promising techniques to remediate organic contaminations in-situ. Solutions of surfactant or surfactant with polymer are used to dramatically expedite the process, which in turn, may reduce the treatment time of a site compared to use of water alone. In the design of surfactant-based technologies for remediation of organic contaminated aquifers, it is very important to have a considerable analysis using extensive numerical simulations prior to full-scale implementation. This study investigated the formation and flow of microemulsions during SEAR of organic-contaminated aquifer using the finite difference model UTCHEM, a three-dimensional, multicomponent, multiphase, compositional model. The remediation process variables considered in this study were the sequence of injection fluids, the injection and extraction rate, the concentrations of polymer in surfactant slug and chase water, and the duration of surfactant injection. For each variable, temporal changes in injection and production wells and spatial distributions of relative saturations in the organic phase were compared. Cleanup time and cumulative organic recovery were also quantified. The study would provide useful information to design strategies for the remediation of nonaqueous phase liquid-contaminated aquifers.