• 제목/요약/키워드: Implantable Medical Devices

검색결과 54건 처리시간 0.056초

생체 이식형 무선에너지 전송 시스템 개발 (Development of Transcutaneous Energy Transmission System for Implantable Devices)

  • 유동수;이준하;서희돈;이상학
    • 한국의학물리학회지:의학물리
    • /
    • 제16권3호
    • /
    • pp.155-159
    • /
    • 2005
  • 생체에 이식되는 장치에 사용하기 위한 무선에너지 전송 시스템을 개발하였다. 이것은 체내에 이식된 장치에 경피적으로 전기에너지를 공급할 수 있는 것이다 경피적으로 결합된 트랜스포머의 권선간의 거리는 인간의 피부 두께를 고려하여 약 10$\~$20 mm이다. 본 연구에서는 Class-E 공진증폭기를 사용하여 높은 효율을 얻고자 하였다. 최대 전류는 각 주파수에서 50 mA 이상의 전류를 얻을 수 있었다. 개발된 시스템은 500 kHz, 1 MHz 및 4 MHz의 서로 다른 주파수에서 정확하게 동작하고 있다는 것을 보여주고 있다.

  • PDF

이식형 의료기기의 추적 및 회수 관리를 위한 통합전산관리시스템 설계 (Design of a Tracking & Recall Management System for Implantable Devices)

  • 박순만;유선국
    • 전자공학회논문지SC
    • /
    • 제48권5호
    • /
    • pp.74-80
    • /
    • 2011
  • 본 연구는 유통되는 이식형(implantable) 의료기기의 추적(tracking) 및 회수(recall) 처리를 신속하고 정확하게 수행할 수 있는 통합 전산 관리시스템 설계하는 것을 목적으로 한다. 이를 위해 최신 FDA 규정을 만족하는 시스템을 MSF/CD 설계방법론을 기반으로 설계하였다. 추적과 회수의 주요한 4가지 가상 시나리오를 설정하고 workflow diagram을 작성하여 개념설계하였다. 또한 business workflow를 만족하는 서버의 논리 DB를 개발하여 논리설계 단계까지 시스템을 설계하였다. 제안된 시스템으로 이식형 의료기기의 심각한 부작용 등 문제 발생 시 신속하고 정확한 추적과 회수 처리가 가능하여 이식형 의료기기를 장착한 환자의 생명유지 및 국민 건강 보호를 위한 정부 차원의 효율적인 관리가 가능할 것으로 사료된다.

심부 조직 인체 삽입용 세 가지 밴드 안테나 (A Triple Band Deep-Tissue Antenna for Biomedical Implants)

  • 유형석
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.383-386
    • /
    • 2017
  • In this study, we introduce a triple-band flexible implantable antenna that is tuned by using a ground slot in three specific bands, namely Medical Implanted Communication Service (MICS: 402-405 MHz) for telemetry, the midfield band (lower gigahertz: 1.45-1.6 GHz) for Wireless Power Transfer (WPT), and the Industrial, Scientific and Medical band (ISM: 2.4-2.45 GHz) for power conservation. This antenna is wrapped inside a printed 3D capsule prototype to show its applicability in different implantable or ingestible devices. The telemetry performance of the proposed antenna was simulated and measured by using a porcine heart. From the simulation and measurement, we found that use of a ground slot in the implantable antenna can improve the antenna performance and can also reduce the Specific Absorption Rate (SAR).

주파수 추적 방식에 의한 이식형 의료기기용 무선전력전달 장치 구현 (Implementation of a Transcutaneous Power Transmission System for Implantable Medical Devices by Resonant Frequency Tracking Method)

  • 임형규;이장우;김동욱;이정현;성기웅;김명남;조진호
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권5호
    • /
    • pp.401-406
    • /
    • 2010
  • Recently, many implantable medical devices have been developed and manufactured in many countries. In these devices, generally, energy is supplied by a transcutaneous method to avoid the skin penetration due to the power wires. As the most transcutaneous power transmission methods, the electromagnetic coupling between two coils and resonance at a specific frequency has been used widely. However, in case of a transcutaneous power transmitter with a fixed switching frequency to drive an electromagnetic coil, inefficient power transmission and thermal damage by the undesirable current variation may occur, because the electromagnetic coupling state between a primary coil and a secondary coil is very sensitive to skin thickness of each applied position and by person. In order to overcome these defects, a transcutaneous power transmitter of which operating frequency can be automatically tracked into the resonance frequency at each environment has been designed and implemented. Through the results of experiments for different coil surroundings, we have been demonstrated that the implemented transcutaneous power transmitter can track automatically into a varied resonance frequency according to arbitrary skin thickness change.

MICS 표준에 기반한 무선 텔레메트리 시스템 개발 (Development of a wireless telemetry system based on MICS standard)

  • 이승하;박일용
    • 센서학회지
    • /
    • 제18권1호
    • /
    • pp.63-71
    • /
    • 2009
  • It is said that the desirable bio-signal measurement and stimulation system should be an implantable type if the several problems such as biocompatibility, electrical safety, and so on are overcome. In addition to the biocompatibility issue, a robust RF communication and a stable electrical power source for the implantable bio-signal measurement and stimulation system are very important matters. In this paper, a wireless telemetry system which adopts the FCC's approved MICS (medical implant communication service) protocol and a wireless power transmission has been proposed. The proposed system composed of a base station (BS) and an implantable medical device (IMD) has the advantages that the interference with other RF devices can be reduced by the use of the specially assigned MICS frequency band of 402.MHz to 405 MHz. Also, the proposed system includes various functions of a multi-channel bio-signal acquisition and an electric stimulation. Since the electrical power for the IMD can be provided by the inductive link between PCB patterned coils, the IMD needs no battery so that the IMD can be smaller size and much less dangerous than the active type IMD which includes the internal battery. Finally, the validity as a wireless telemetry system has been demonstrated through the experiments by using the implemented BS and IMD.

Implantable Drug Delivery Systems-Design Process

  • Vincent, Croquet;Benolt, Raucent;Onori, Mauro
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권4호
    • /
    • pp.40-46
    • /
    • 2006
  • The market of programmable implantable pumps has bound to a monopolistic situation, inducing high device costs, thus making them inaccessible to most patients. Micro-mechanical and medical innovations allow improved performances by reducing the dimensions. This affects the consumption and weight, and, by reducing the number of parts, the cost is also affected. This paper presents the procedure followed to design an innovative implantable drug delivery system. This drug delivery system consists of a low flow pump which shall be implanted in the human body to relieve pain. In comparison to classical known solutions, this pump presents many advantages of high interest in both medical and mechanical terms. The first section of the article describes the specifications which would characterize a perfect delivery system from every points of view. This concerns shape, medication, flow, autonomy, biocompatibility, security and sterilization ability. Afterwards, an overview of existing systems is proposed in a decisional tree. Positive displacement motorized pumps are classified into three main groups: the continuous movement group, the fractioned translation group and the alternative movement group. These systems are described and the different problems which are specific to these mechanisms are presented. Since none of them fully satisfy the specifications, an innovation is justified.. The decisional tree is therefore extended by adding new principles: fractioned refilling and fractioned injection within the fractioned translation movement group, spider guiding system within the alternative translation movement group, rotational bearing guided device and notch hinge guided device in the alternative rotation movement group.

이식형 인공중이를 위한 압전 플로팅 매스 트랜스듀서의 제안 (Proposal of a piezoelectric floating mass transducer for implantable middle ear hearing devices)

  • 이창우;김민규;박일용;송병섭;노용래;조진호
    • 센서학회지
    • /
    • 제14권5호
    • /
    • pp.322-330
    • /
    • 2005
  • A new type of transducer, piezoelectric floating mass transducer (PFMT) which has advantages of piezoelectric and electromagnetic transducer has been proposed and implemented for the implantable middle ear hearing devices. By the uneven bonding of piezoelectric material to the inner bottom of transducer case, the PFMT can vibrate back-and-forth along the longitudinal axis of the transducer even though the piezoelectric material within the cylindrical case produces only the bilateral expansion and contraction according to the applied electrical signal. To improve efficiency of the PFMT, the multi-layered piezoelectric material has been adapted. The small number of components in the PFMT enables the simple manufacturing and the easy implanting into the middle ear. In order to examine the characteristics of vibration, mechanical modeling and finite element analyses of the proposed transducer have been performed. From the result of theoretical analyses and the measured data from the experiment, it is verified that the implemented PFMT can be used in implantable middle ear hearing devices.

이식형 인공중이용 음성신호 처리 모듈을 위한 직접 메모리 억세스 기반의 FIR 필터 설계 (Design of FIR filter using direct memory access for voice signal processing module in implantable middle ear hearing devices)

  • 김종민;박일용;윤영호;김민규;임형규;한지훈;김명남;조진호
    • 센서학회지
    • /
    • 제15권4호
    • /
    • pp.223-230
    • /
    • 2006
  • An FIR filter for digital voice signal processing has been designed and implemented using a microcontroller in implantable middle ear hearing devices (IMEHDs). The designed digital voice signal processing filter which has fast and accurate filtering operation and controllable filter characteristics has been implemented using a hardware multiplier and a direct memory access (DMA) in the low power microcontroller, MSP430F169. It has been confirmed that each of the implemented 6-orders Remez FIR filters with 1 channel and 2 channels can be applied to the voice signal processing module of IMEHDs based on the evaluation results of the filtering performance experiment.

Current Development in Bio-implantable Sensors

  • Swarup, Biswas;Yongju, Lee;Hyojeong, Choi;Hyeok, Kim
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.403-410
    • /
    • 2022
  • Flexible and wearable sensing technologies have emerged as a result of developments in interdisciplinary research across several fields, bringing together various subjects such as biology, physics, chemistry, and information technology. Moreover, various types of flexible wearable biocompatible devices, such customized medical equipment, soft robotics, bio-batteries, and electronic skin patches, have been developed over the last several years that are extensively employed to monitor biological signals. As a result, we present an updated overview of new bio-implantable sensor technologies for various applications and a brief review of the state-of-the-art technologies.